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Abstract: The classical half-power bandwidth
(HPB) method is known as a simple and widely used
method to identify damping in experimental research
on structural vibrations. However, this method is only
effective in systems with small damping and separate
natural frequencies. This paper presents the extreme
frequency bandwidth (EFB) method and proposes a
formula to estimate the viscous damping ratio from
the extreme points of the real part of the frequency
response function (FRF) in the displacement
spectrum analysis of structures. The displacement
FRF is obtained by Fourier transform of the simulated
load and response signals of the system. The results
show that the EFB method can identify the viscous
damping in structures that have one or more degrees
of freedom with different damping levels.

Keywords: Viscous damping estimation, extreme
frequency bandwidth method, half-power bandwidth
method, structural vibration, frequency response
function.

Toém tat: Phuong phap dai tan sé niva cdng suét
la phwong phap don gidn va dwoc st dung réng rai
dé nhan dang cén trong nghién ctiu thuc nghiém vé
dao déng két céu. Tuy nhién, phuong phap nay chi
hiéu qua trong hé c6 cén nhd va cac tén sé riéng tach
biét. Bai bdo nay trinh bay phwong phéap déi tan sé
cuc trj va dé xudt mot cong thire dé wéc luong ty sé
cén nhét tir cac diém cuc trj cua db thj phan thuc
trong phan tich phé chuyén vj cia két cdu. FRF
chuyén vj thu dwoc bang bién déi Fourier céc tin hiéu
mo phdng tai trong va phan ¢ng cda hé. Két qua cho
thdy phuong phap déi tan sé cuc trj c6 thé nhan dang
cén nhot trong két cdu c6 mét hodc nhiéu bac tw do
v6i cac mere can khac nhau.

Tw khéa: Udc lurong can nhdét, phuwong phap dai
tén sé cuc tri, phuong phap dai tan sé niva cong suét,
dao déng két cdu, ham phan ing tén sé.
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1. Introduction

Damping parameters play a crucial role in
structural vibration analysis. These parameters are
not easily determined through theoretical means and
are often estimated experimentally. Damping
estimation methods can be classified into several
categories, including estimation for individual modes,
estimation for multiple modes [1-3], time-domain
estimation [4, 5], and frequency-domain estimation
[6, 7] and operational modal analysis [8].

The classical half-power bandwidth (HPB) method
is a popular technique for determining damping from
experimental structural vibration data. This approach
calculates the viscous damping ratio using a classical
formula based on experimental measurements of the
displacement or acceleration frequency response
function (FRF). This ratio is equal to half the frequency
bandwidth which the FRF signal power is reduced to
half of its maximum value [3].

The classical formula for determining damping is
an approximate method that is typically used when
the damping ratio of a structure is very small.
However, when damping is high, this formula can
yield significant errors. To improve the accuracy,
more advanced approximate formulas based on the
HPB method have been developed. Yin [9, 10]
proposed a more precise formula for calculating the
damping ratio of a single degree-of-freedom (DOF)
system using the squared FRF curve. Olmos (2010)
[11] identified damping in multi-DOF systems using
the HPB approach, assuming that viscous damping
is proportional to stiffness and mass and remains
constant.

Wang | [12] proposed a third-order formula based
on the HPB method for estimating the viscous
damping ratio in single-degree-of-freedom (DOF)
systems. Papagiannopoulos et al. [13] developed the
third-order formulas to estimate damping ratios in
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multi-DOF systems. Then, Wang J [14, 15] compared
the third-order formula to the classical formula for
determining the damping ratios in 2-DOF systems.
Generally, the larger the separation between natural
frequencies of the structure, the smaller the errors in
damping estimation, and the accuracy of the HPB
method improves as the damping level decreases. In
2014, Wu [16] proposed a formula for determining the
damping ratio by neglecting the sixth-order
infinitesimal term, which provides high accuracy for
estimating the damping ratio in single-DOF systems.
However, a limitation of Wu's formula, as well as a
general limitation of HPB methods, is that they are
mainly applicable within a damping range of 0 to
0.383. Additionally, these damping estimation
formulas are designed for single-DOF systems and
require specific adjustments when applied to multi-
DOF systems.

Vu Dinh Huong et al. [17] employed the general
bandwidth method to develop a precise formula for
predicting the viscous damping ratio based on the
displacement spectrum of a single-DOF system. This
formula enhances the determination of the damping
ratio by using a power factor instead of the factor of
2 used in the HPB method. Analysis of the single-
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DOF system showed that the method provides a
more accurate damping estimate than the HPB
method and is effective for estimating high levels of
damping. Subsequently, the authors applied the
general bandwidth method to identify hysteresis
damping from acceleration frequency response
functions (FRF) [18, 20]. Later, Wu [19] also analyzed
the displacement spectrum and proposed a formula
for estimating the damping ratio based on the power
ratio, similar to the formula in [17]. The authors then
examined how the power ratio influences the
accuracy of damping estimation formulas in multi-
DOF systems.

The EFB method is a recently developed
approach for estimating damping. It relies on the real
part of the frequency response function (FRF) to
create formulas for estimating damping parameters.
This paper introduces an approximate formula for
estimating the viscous damping ratio using the EFB
method. Numerical experiments were conducted on
single-degree-of-freedom (DOF) and multi-DOF
structures, and the results of viscous damping
estimation using the proposed formula are compared
with existing formulas of the half-power method.

2. Half-power bandwidth method
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Figure 1. Half-power bandwidth method

The classical formula for damping estimation
based on the displacement FRF of single-DOF
system has the following form [1-3]:

o, -0, b

¢ = 2o 2 ()

r
where b is the frequency bandwidth; wa and w» are

two frequencies at the amplitudes equal to 1/ \/E the
maximum amplitude (at resonance frequency ).
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By continuously expanding the square root
expressions, in 2011, Wang [6] proposed a third-
order equation to determine the viscous damping
ratio from the displacement FRF as follows:

48 +2£ =D o)

The formula for determining & according to (2)
has significantly reduced the error, but the condition
for applying (2) has been shown by
Papagiannopoulos [2] and Wu [5] to be & < 0.383.
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Furthermore, the error when estimating the larger
damping ratio (§ = 0.35) is still greater than 10%.

3. Extreme frequency bandwidth method
Dynamic equilibrium equation of a single-DOF
system with viscous damping:
mui(t) +cu(t) + ku(t) = p(t) (3)
Transform to the frequency domain, substituting
equations u(t) = U(w).e* and p(t) = P(0).e'*" into
equation (3), we obtain:

(e’ +ico+k)U ()" =P(w)e (4)
The ratio between displacement and applied
force in the frequency domain:

U(w) 1

P(w) k-ma?+icw
H(w) is called the displacement (or receptance)

frequency response function (FRF) of the single-DOF

system. FRF is a complex quantity that depends on

frequency and it can also be expressed as.

H(w) = ®)

1/k 1 1-7? .1 2
H(a))= 2 =T 2277 2_|_ 22577 2 (6)
1-2 yige @ K=m )y +@en)” kd=n")"+(2em)
wg Wy
with, 7=/ @,
Real part of the receptance FRF is:
1 1-n°
Re(H)== )
k (1-7°)" +(2¢n)*
Re(H)
A
Re(H)max
Re(H)min

Figure 2. Extreme

The graph of the Re(H) function is shown in
Figure 2, where o1 and w2 are the extreme
frequencies. The function Re(H) reaches an extreme
value when its derivative is zero:

frequency bandwidth method

The solution of the equation (8) will then give the
following two roots:

T, = J1F2& (with £ <0.5) 9)

Using Taylor expansion for the expressions (9),

@ =0=n' -2 +1-4£2=0 (8  we have:

n
@, 1 1., 1., 5,
—=n=41-25=1-—(25)-=&"—=&"—=&" +-- 10
o §=1-2(2)-5¢ 58 -5¢ (10)
@, 1 1., 1., 5,
<=1, =1+25 =1+—(2)- =&+ =& =&+ 11
pC §=142(26) =28 + 08 —o¢ (12)
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From (10) and (11), obtain the formula to
determine the natural frequency of the structure
according to the extreme frequencies:

M:nzﬂh :2—§2+§§4+... (12)
@, 4

When the damping is small (& << 1), ignoring the
2nd-order infinitesimal quantity of & and its higher-
order terms in (12), we get the natural frequency
approximately equal to the average of the extreme
frequencies:

w, + o,
a)oz% (13)
> 13
5: £+ ﬂ_+i _E ﬁ+
2 \I 4 27 3| 2

Equation (16) is an approximate formula,
proposed to determine the damping ratio from
extreme frequency bandwidth of real part of
displacement FRF. The estimated range of the
damping ratio of this method according to (9) is § <
0.5.

4. Comparison of the accuracy of damping
estimation methods in the single-DOF system

Consider a single-DOF system with natural
frequency an = = (rad/s). First, assume the damping
ratio & is a value from 0.05 to 0.5, then equation (6)
gives the dimensionless FRF (the stiffness k can be
assumed to be 1). From this, the amplitude of the
FRF and the corresponding half-power frequencies
can be determined, and similarly the real part of the

> -1/3
/ﬁ_+i
4 27

Combining (10) and (11) yields the extreme
frequency bandwidth and ignoring the 5th-order
infinitesimal quantity of & we get a third-order
equation to determine the damping ratio:

=i, = =25+&

In which, B is extreme frequency bandwidth of

(14)

real part of receptance FRF:

ﬁ:wz_a)l

Wy
Finally, the cubic equation (14) has a solution:

(15)

(16)

FRF and the corresponding extreme frequencies can
be obtained. Finally, the damping ratio can be
estimated according to the above formulas.

The results of the damping estimation by the
methods are presented in Table 1. In which, the first
column is the assumed & value, the second and third
columns show the & value calculated by the classical
HPB method using the classical formula (1) and its
corresponding error (in %); the fourth and fifth
columns are the & values calculated by the third-order
formula (2) and the error; the sixth and seventh
columns show the damping ratio value and the error
estimated by the proposed formula from the extreme
frequency bandwidth method in this paper.

Table 1. Estimation of damping ratio in the single-DOF system

¢ from Eq. (1)

¢ from Eq. (2) & from Proposed

& assumed and error % and error % Eg. (16) and error %
0.05 0.050 0.5% 0.050 0.01% 0.050 0.12%
0.1 0.102 2.1% 0.100 0.06% 0.101 0.51%
0.15 0.157 4.8% 0.150 0.29% 0.152 1.19%
0.2 0.218 9.1% 0.202 0.91% 0.204 2.22%
0.25 0.289 15.6% 0.256 2.23% 0.259 3.69%
0.3 0.377 25.6% 0.315 4.84% 0.317 5.79%
0.35 0.502 43.5% 0.387 10.46% 0.381 8.79%

0.383 0.707 84.7% 0.483 26.00% 0.427 11.56%
0.4 - - - - 0.453 13.35%
0.45 - - - - 0.546 21.24%
0.5 - - - - 0.771 54.18%
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Figure 3 shows more clearly the error of the
damping estimation methods when the damping
ratio changes. Accordingly, the classical formula
(1) gives the largest error and is only suitable for
structures with a damping ratio less than 0.15. The
formula (2) proposed by Wang [4] can estimate
well for a damping ratio up to 0.3. However, when
the damping ratio is larger than the critical value &

~ 0.383, the both formulas give large errors and are
unstable. The proposed formula estimates the
damping quite accurately, similar to Wang's third-
order formula when the structure has damping
level less than 0.3. The proposed method can
estimate the damping ratio up to 0.5, while HPB
method can only estimate the damping ratio up to
0.383.

80 \
- -0 - HPB Clasical form I
--—%---HPB 3rd-Order

60 - —&8— Proposed method '

form ,

Damping estimation error (%)

I I | |

0.05 041 015 02 025 03 035 04 045 05
Damping ratio &

Figure 3. The error of

5. Numerical simulation on structures
5.1 Simulated vibration measurement data
Consider the structure of a 3-story reinforced

concrete building as shown in Figure 4, which is
subjected to dynamic load. The structure has the

the damping estimation methods

following parameters: beam cross-section size bxh =
0.22 x 0.5 cm, column cross-section 0.22 x 0.22 cm,
floor height is 5 m, span width is 6 m. Concrete
material has modulus of elasticity E = 2.5e7 (KN/m?),
specific weight p = 25 (kN/m?3).

4
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Figure 4. The 3-story building

The system is subjected to a half cycle of a
sinusoidal load with period 2.0 s as shown in Figure 5a.
Assume that the proportional damping model has the
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same damping levels for all modes. The displacement
simulation measurement data at the nodes is obtained
by time history analysis of the finite element model
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using the direct integration method. The horizontal ~ 0.05+0.15) is shown in figure 5b and with large damping

displacement at node 5 with small damping level (¢ =  level (¢ = 0.2+0.4) it is shown in Figure 6b.
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Figure 5. The load and displacement at node 5 with small damping level
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Figure 6. The load and displacement at node 5 with large damping level

5.2 The result of damping estimation H (o) = U(w) (17)
P(w)

where U(w) and P(w) are the Fourier transforms

of the displacement u(t) and the dynamic load p(t)
responses as follows: respectively.

Simulate the displacement frequency response
function using Fourier transform of the input-output
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Figure 7. The FRF with small damping
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Figure 8. The FRF with large damping

The graphs of amplitude and real part of the FRF
for horizontal displacement at node 5 are shown in
Figure 7 in case the assumed damping level is small.

The corresponding graphs in case of large damping
level are shown in Figure 8.

From the graphs, the half-power frequencies in
amplitude of the FRF and the extreme frequencies in
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real part of FRF can be determined. From there, the
damping ratios can be estimated using the half-
power bandwidth method and extreme frequency
bandwidth method. Finally, calculate the damping
ratios according to the above formulas and evaluate
its error. The damping estimation results for the first
mode are provided in Table 2, and those for the
second mode are in Table 3.
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Table 2. Damping estimation error for the first mode

& from Eq. (1)

&€ from Eq. (2)

& from Proposed

& assumed and error % and error % Eg. (16) and error %
0.05 0.0502 0.4% 0.0499 0.1% 0.0500 0.03%
0.1 0.1025 2.5% 0.1005 0.5% 0.1000 0.05%
0.15 0.1596 6.4% 0.1525 1.7% 0.1513 0.86%
0.2 0.225 12.5% 0.207 3.6% 0.203 1.7%
0.3 0.409 36.3% 0.334 11.4% 0.316 5.2%
0.4 - - - 0.452 13.0%

Table 2 show that the damping estimation error
for the first mode using the proposed method is
significantly smaller compared to the classical and 3-
rd order formulas based on HPB method. In addition,
the proposed method provides a larger damping
estimation range than the existing formulations. For
the first mode, the classical formula gives good

results when estimating small damping levels (about
less than 0.1), the 3"-order formula can estimate
larger damping levels (about 0.2), and the proposed
formula can estimate damping ratios up to 0.3 with an
error of about 5%. Additionally, at a high damping
level (0.4), the proposed method has an error of 13%,
while the HPB method does not provide a solution.

Table 3. Damping estimation error of the second mode

¢ from Eq. (1)

& from Eq. (2)

& from Proposed

& assumed and error % and error % Eqg. (16) and error %
0.05 0.049 1.9% 0.049 2.4% 0.049 2.1%
0.1 0.096 3.8% 0.094 5.5% 0.095 5.3%
0.15 0.141 6.0% 0.136 9.3% 0.135 9.8%
0.2 0.183 8.6% 0.172 13.8% 0.171 14.7%
0.3 0.338 15.4% 0.248 20.8% 0.234 22.1%
0.4 - - - - 0.284 29.1%

Table 3 shows that all three formulas give good
results only when estimating small damping levels
(less than 0.1). As the damping level increases, the
errors of the formulas also increase. The proposed
formula has lower accuracy than the 3"-order
formula, but the difference is quite small. On the other
hand, at high damping levels, the classical formula
for damping estimation performs better for the
second mode compared to the other two formulas,
although the error is still relatively large (from 6% to
15.4%). The proposed method can still estimate a
damping level of 0.4, but with an error as high as
29.1%.

Tables 2 and 3 also show that the proposed
method is highly effective for estimating damping in
the first mode, even at high damping levels. However,
the method performs less effectively when applied to
the second mode, especially at high damping levels.

5. Conclusion

The paper proposes a formula for estimating the
viscous damping ratio of a structure from the extreme
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frequency bandwidth of the real part graph of the
displacement FRF. For a single-DOF system, the
proposed formula gives more accurate damping
estimation results than the classical formula, and the
damping estimation range is extended to a damping
level of 0.5. In a multi-DOF system, the proposed
formula can estimate the damping ratio for the first
mode with small errors, even with a large damping
level. However, the damping ratio estimation results
for the second mode increase significantly as the
damping level increases.
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Abstract: The classical half-power bandwidth
(HPB) method is known as a simple and widely used
method to identify damping in experimental research
on structural vibrations. However, this method is only
effective in systems with small damping and separate
natural frequencies. This paper presents the extreme
frequency bandwidth (EFB) method and proposes a
formula to estimate the viscous damping ratio from
the extreme points of the real part of the frequency
response function (FRF) in the displacement
spectrum analysis of structures. The displacement
FRF is obtained by Fourier transform of the simulated
load and response signals of the system. The results
show that the EFB method can identify the viscous
damping in structures that have one or more degrees
of freedom with different damping levels.

Keywords: Viscous damping estimation, extreme
frequency bandwidth method, half-power bandwidth
method, structural vibration, frequency response
function.

Toém tat: Phuong phap dai tan sé niva cdng suét
la phwong phap don gidn va dwoc st dung réng rai
dé nhan dang cén trong nghién ctiu thuc nghiém vé
dao déng két céu. Tuy nhién, phuong phap nay chi
hiéu qua trong hé c6 cén nhd va cac tén sé riéng tach
biét. Bai bdo nay trinh bay phwong phéap déi tan sé
cuc trj va dé xudt mot cong thire dé wéc luong ty sé
cén nhét tir cac diém cuc trj cua db thj phan thuc
trong phan tich phé chuyén vj cia két cdu. FRF
chuyén vj thu dwoc bang bién déi Fourier céc tin hiéu
mo phdng tai trong va phan ¢ng cda hé. Két qua cho
thdy phuong phap déi tan sé cuc trj c6 thé nhan dang
cén nhot trong két cdu c6 mét hodc nhiéu bac tw do
v6i cac mere can khac nhau.

Tw khéa: Udc lurong can nhdét, phuwong phap dai
tén sé cuc tri, phuong phap dai tan sé niva cong suét,
dao déng két cdu, ham phan ing tén sé.
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1. Introduction

Damping parameters play a crucial role in
structural vibration analysis. These parameters are
not easily determined through theoretical means and
are often estimated experimentally. Damping
estimation methods can be classified into several
categories, including estimation for individual modes,
estimation for multiple modes [1-3], time-domain
estimation [4, 5], and frequency-domain estimation
[6, 7] and operational modal analysis [8].

The classical half-power bandwidth (HPB) method
is a popular technique for determining damping from
experimental structural vibration data. This approach
calculates the viscous damping ratio using a classical
formula based on experimental measurements of the
displacement or acceleration frequency response
function (FRF). This ratio is equal to half the frequency
bandwidth which the FRF signal power is reduced to
half of its maximum value [3].

The classical formula for determining damping is
an approximate method that is typically used when
the damping ratio of a structure is very small.
However, when damping is high, this formula can
yield significant errors. To improve the accuracy,
more advanced approximate formulas based on the
HPB method have been developed. Yin [9, 10]
proposed a more precise formula for calculating the
damping ratio of a single degree-of-freedom (DOF)
system using the squared FRF curve. Olmos (2010)
[11] identified damping in multi-DOF systems using
the HPB approach, assuming that viscous damping
is proportional to stiffness and mass and remains
constant.

Wang | [12] proposed a third-order formula based
on the HPB method for estimating the viscous
damping ratio in single-degree-of-freedom (DOF)
systems. Papagiannopoulos et al. [13] developed the
third-order formulas to estimate damping ratios in
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multi-DOF systems. Then, Wang J [14, 15] compared
the third-order formula to the classical formula for
determining the damping ratios in 2-DOF systems.
Generally, the larger the separation between natural
frequencies of the structure, the smaller the errors in
damping estimation, and the accuracy of the HPB
method improves as the damping level decreases. In
2014, Wu [16] proposed a formula for determining the
damping ratio by neglecting the sixth-order
infinitesimal term, which provides high accuracy for
estimating the damping ratio in single-DOF systems.
However, a limitation of Wu's formula, as well as a
general limitation of HPB methods, is that they are
mainly applicable within a damping range of 0 to
0.383. Additionally, these damping estimation
formulas are designed for single-DOF systems and
require specific adjustments when applied to multi-
DOF systems.

Vu Dinh Huong et al. [17] employed the general
bandwidth method to develop a precise formula for
predicting the viscous damping ratio based on the
displacement spectrum of a single-DOF system. This
formula enhances the determination of the damping
ratio by using a power factor instead of the factor of
2 used in the HPB method. Analysis of the single-

a)
[H|

A

DOF system showed that the method provides a
more accurate damping estimate than the HPB
method and is effective for estimating high levels of
damping. Subsequently, the authors applied the
general bandwidth method to identify hysteresis
damping from acceleration frequency response
functions (FRF) [18, 20]. Later, Wu [19] also analyzed
the displacement spectrum and proposed a formula
for estimating the damping ratio based on the power
ratio, similar to the formula in [17]. The authors then
examined how the power ratio influences the
accuracy of damping estimation formulas in multi-
DOF systems.

The EFB method is a recently developed
approach for estimating damping. It relies on the real
part of the frequency response function (FRF) to
create formulas for estimating damping parameters.
This paper introduces an approximate formula for
estimating the viscous damping ratio using the EFB
method. Numerical experiments were conducted on
single-degree-of-freedom (DOF) and multi-DOF
structures, and the results of viscous damping
estimation using the proposed formula are compared
with existing formulas of the half-power method.

2. Half-power bandwidth method

b)
[H]

\

(0] (QF) oy ™p ®

Figure 1. Half-power bandwidth method

The classical formula for damping estimation
based on the displacement FRF of single-DOF
system has the following form [1-3]:

o, -0, b

¢ = 2o 2 ()

r
where b is the frequency bandwidth; wa and w» are

two frequencies at the amplitudes equal to 1/ \/E the
maximum amplitude (at resonance frequency ).

Tap chi KHCN Xay dung - s6 3/2024

By continuously expanding the square root
expressions, in 2011, Wang [6] proposed a third-
order equation to determine the viscous damping
ratio from the displacement FRF as follows:

48 +2£ =D o)

The formula for determining & according to (2)
has significantly reduced the error, but the condition
for applying (2) has been shown by
Papagiannopoulos [2] and Wu [5] to be & < 0.383.
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Furthermore, the error when estimating the larger
damping ratio (§ = 0.35) is still greater than 10%.

3. Extreme frequency bandwidth method
Dynamic equilibrium equation of a single-DOF
system with viscous damping:
mui(t) +cu(t) + ku(t) = p(t) (3)
Transform to the frequency domain, substituting
equations u(t) = U(w).e* and p(t) = P(0).e'*" into
equation (3), we obtain:

(e’ +ico+k)U ()" =P(w)e (4)
The ratio between displacement and applied
force in the frequency domain:

U(w) 1

P(w) k-ma?+icw
H(w) is called the displacement (or receptance)

frequency response function (FRF) of the single-DOF

system. FRF is a complex quantity that depends on

frequency and it can also be expressed as.

H(w) = ®)

1/k 1 1-7? .1 2
H(a))= 2 =T 2277 2_|_ 22577 2 (6)
1-2 yige @ K=m )y +@en)” kd=n")"+(2em)
wg Wy
with, 7=/ @,
Real part of the receptance FRF is:
1 1-n°
Re(H)== )
k (1-7°)" +(2¢n)*
Re(H)
A
Re(H)max
Re(H)min

Figure 2. Extreme

The graph of the Re(H) function is shown in
Figure 2, where o1 and w2 are the extreme
frequencies. The function Re(H) reaches an extreme
value when its derivative is zero:

frequency bandwidth method

The solution of the equation (8) will then give the
following two roots:

T, = J1F2& (with £ <0.5) 9)

Using Taylor expansion for the expressions (9),

@ =0=n' -2 +1-4£2=0 (8  we have:

n
@, 1 1., 1., 5,
—=n=41-25=1-—(25)-=&"—=&"—=&" +-- 10
o §=1-2(2)-5¢ 58 -5¢ (10)
@, 1 1., 1., 5,
<=1, =1+25 =1+—(2)- =&+ =& =&+ 11
pC §=142(26) =28 + 08 —o¢ (12)
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From (10) and (11), obtain the formula to
determine the natural frequency of the structure
according to the extreme frequencies:

M:nzﬂh :2—§2+§§4+... (12)
@, 4

When the damping is small (& << 1), ignoring the
2nd-order infinitesimal quantity of & and its higher-
order terms in (12), we get the natural frequency
approximately equal to the average of the extreme
frequencies:

w, + o,
a)oz% (13)
> 13
5: £+ ﬂ_+i _E ﬁ+
2 \I 4 27 3| 2

Equation (16)
proposed to determine the damping ratio from
extreme frequency bandwidth of real part of
displacement FRF. The estimated range of the
damping ratio of this method according to (9) is § <
0.5.

4. Comparison of the accuracy of damping
estimation methods in the single-DOF system

is an approximate formula,

Consider a single-DOF system with natural
frequency an = = (rad/s). First, assume the damping
ratio & is a value from 0.05 to 0.5, then equation (6)
gives the dimensionless FRF (the stiffness k can be
assumed to be 1). From this, the amplitude of the
FRF and the corresponding half-power frequencies
can be determined, and similarly the real part of the

> -1/3
/ﬁ_+i
4 27

Combining (10) and (11) yields the extreme
frequency bandwidth and ignoring the 5th-order
infinitesimal quantity of & we get a third-order
equation to determine the damping ratio:

=i, = =25+&

In which, B is extreme frequency bandwidth of

(14)

real part of receptance FRF:

ﬁ:wz_a)l

Wy
Finally, the cubic equation (14) has a solution:

(15)

(16)

FRF and the corresponding extreme frequencies can
be obtained. Finally, the damping ratio can be
estimated according to the above formulas.

The results of the damping estimation by the
methods are presented in Table 1. In which, the first
column is the assumed & value, the second and third
columns show the & value calculated by the classical
HPB method using the classical formula (1) and its
corresponding error (in %); the fourth and fifth
columns are the & values calculated by the third-order
formula (2) and the error; the sixth and seventh
columns show the damping ratio value and the error
estimated by the proposed formula from the extreme
frequency bandwidth method in this paper.

Table 1. Estimation of damping ratio in the single-DOF system

¢ from Eq. (1)

¢ from Eq. (2) & from Proposed

& assumed and error % and error % Eg. (16) and error %
0.05 0.050 0.5% 0.050 0.01% 0.050 0.12%
0.1 0.102 2.1% 0.100 0.06% 0.101 0.51%
0.15 0.157 4.8% 0.150 0.29% 0.152 1.19%
0.2 0.218 9.1% 0.202 0.91% 0.204 2.22%
0.25 0.289 15.6% 0.256 2.23% 0.259 3.69%
0.3 0.377 25.6% 0.315 4.84% 0.317 5.79%
0.35 0.502 43.5% 0.387 10.46% 0.381 8.79%

0.383 0.707 84.7% 0.483 26.00% 0.427 11.56%
0.4 - - - - 0.453 13.35%
0.45 - - - - 0.546 21.24%
0.5 - - - - 0.771 54.18%
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Figure 3 shows more clearly the error of the
damping estimation methods when the damping
ratio changes. Accordingly, the classical formula
(1) gives the largest error and is only suitable for
structures with a damping ratio less than 0.15. The
formula (2) proposed by Wang [4] can estimate
well for a damping ratio up to 0.3. However, when
the damping ratio is larger than the critical value &

~ 0.383, the both formulas give large errors and are
unstable. The proposed formula estimates the
damping quite accurately, similar to Wang's third-
order formula when the structure has damping
level less than 0.3. The proposed method can
estimate the damping ratio up to 0.5, while HPB
method can only estimate the damping ratio up to
0.383.

80 \
- -0 - HPB Clasical form I
--—%---HPB 3rd-Order

60 - —&8— Proposed method '

form ,

Damping estimation error (%)

I I | |

0.05 041 015 02 025 03 035 04 045 05
Damping ratio &

Figure 3. The error of

5. Numerical simulation on structures
5.1 Simulated vibration measurement data
Consider the structure of a 3-story reinforced

concrete building as shown in Figure 4, which is
subjected to dynamic load. The structure has the

the damping estimation methods

following parameters: beam cross-section size bxh =
0.22 x 0.5 cm, column cross-section 0.22 x 0.22 cm,
floor height is 5 m, span width is 6 m. Concrete
material has modulus of elasticity E = 2.5e7 (KN/m?),
specific weight p = 25 (kN/m?3).

4
>
P(t)
3
2
1?_’_--_.

L5 mﬁLS m#e5 m—

8
o

6m

Figure 4. The 3-story building

The system is subjected to a half cycle of a
sinusoidal load with period 2.0 s as shown in Figure 5a.
Assume that the proportional damping model has the
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same damping levels for all modes. The displacement
simulation measurement data at the nodes is obtained
by time history analysis of the finite element model

Tap chi KHCN Xay dung - s6 3/2024



KET CAU - CONG NGHE XAY DUNG

using the direct integration method. The horizontal ~ 0.05+0.15) is shown in figure 5b and with large damping

displacement at node 5 with small damping level (¢ =  level (¢ = 0.2+0.4) it is shown in Figure 6b.
a
1 T ) T T T
0.8F 1
Z o6l 1
®
S04rf 1
-l
0.2 4
0 L L L L
0 1 2 3 4 5 6
Time [s]
-3 b
6 ><10 T ) T T T T
T Fa — — —Damping ratio ¢ = 0.05
P e N Damping ratio ¢ = 0.10 | 7
E Damping ratio £ = 0.15
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©
°
@2
(=]

Time [s]

Figure 5. The load and displacement at node 5 with small damping level
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Figure 6. The load and displacement at node 5 with large damping level

5.2 The result of damping estimation H (o) = U(w) (17)
P(w)

where U(w) and P(w) are the Fourier transforms

of the displacement u(t) and the dynamic load p(t)
responses as follows: respectively.

Simulate the displacement frequency response
function using Fourier transform of the input-output
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Figure 7. The FRF with small damping
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Figure 8. The FRF with large damping

The graphs of amplitude and real part of the FRF
for horizontal displacement at node 5 are shown in
Figure 7 in case the assumed damping level is small.

The corresponding graphs in case of large damping
level are shown in Figure 8.

From the graphs, the half-power frequencies in
amplitude of the FRF and the extreme frequencies in
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real part of FRF can be determined. From there, the
damping ratios can be estimated using the half-
power bandwidth method and extreme frequency
bandwidth method. Finally, calculate the damping
ratios according to the above formulas and evaluate
its error. The damping estimation results for the first
mode are provided in Table 2, and those for the
second mode are in Table 3.
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Table 2. Damping estimation error for the first mode

& from Eq. (1)

&€ from Eq. (2)

& from Proposed

& assumed and error % and error % Eg. (16) and error %
0.05 0.0502 0.4% 0.0499 0.1% 0.0500 0.03%
0.1 0.1025 2.5% 0.1005 0.5% 0.1000 0.05%
0.15 0.1596 6.4% 0.1525 1.7% 0.1513 0.86%
0.2 0.225 12.5% 0.207 3.6% 0.203 1.7%
0.3 0.409 36.3% 0.334 11.4% 0.316 5.2%
0.4 - - - 0.452 13.0%

Table 2 show that the damping estimation error
for the first mode using the proposed method is
significantly smaller compared to the classical and 3-
rd order formulas based on HPB method. In addition,
the proposed method provides a larger damping
estimation range than the existing formulations. For
the first mode, the classical formula gives good

results when estimating small damping levels (about
less than 0.1), the 3"-order formula can estimate
larger damping levels (about 0.2), and the proposed
formula can estimate damping ratios up to 0.3 with an
error of about 5%. Additionally, at a high damping
level (0.4), the proposed method has an error of 13%,
while the HPB method does not provide a solution.

Table 3. Damping estimation error of the second mode

¢ from Eq. (1)

& from Eq. (2)

& from Proposed

& assumed and error % and error % Eqg. (16) and error %
0.05 0.049 1.9% 0.049 2.4% 0.049 2.1%
0.1 0.096 3.8% 0.094 5.5% 0.095 5.3%
0.15 0.141 6.0% 0.136 9.3% 0.135 9.8%
0.2 0.183 8.6% 0.172 13.8% 0.171 14.7%
0.3 0.338 15.4% 0.248 20.8% 0.234 22.1%
0.4 - - - - 0.284 29.1%

Table 3 shows that all three formulas give good
results only when estimating small damping levels
(less than 0.1). As the damping level increases, the
errors of the formulas also increase. The proposed
formula has lower accuracy than the 3"-order
formula, but the difference is quite small. On the other
hand, at high damping levels, the classical formula
for damping estimation performs better for the
second mode compared to the other two formulas,
although the error is still relatively large (from 6% to
15.4%). The proposed method can still estimate a
damping level of 0.4, but with an error as high as
29.1%.

Tables 2 and 3 also show that the proposed
method is highly effective for estimating damping in
the first mode, even at high damping levels. However,
the method performs less effectively when applied to
the second mode, especially at high damping levels.

5. Conclusion

The paper proposes a formula for estimating the
viscous damping ratio of a structure from the extreme
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frequency bandwidth of the real part graph of the
displacement FRF. For a single-DOF system, the
proposed formula gives more accurate damping
estimation results than the classical formula, and the
damping estimation range is extended to a damping
level of 0.5. In a multi-DOF system, the proposed
formula can estimate the damping ratio for the first
mode with small errors, even with a large damping
level. However, the damping ratio estimation results
for the second mode increase significantly as the
damping level increases.
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