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Abstract: Blind source separation (BSS) based
identification methods draw increasing attention as
an alternative tool for operational modal analysis.
However, their implementation is rare in literature,
especially in cases where the number of sensors is
limited (the underdetermined problem) or harmonic
excitations are involved. This paper proposes an
enhanced modal identification procedure based on
the BSS technique to handle even the
underdetermined problem or the presence of
harmonic excitation. Numerical simulation and
experimental example show that whether in
determined situations or the presence of harmonic
excitation, the proposed method performs accurate
and robust identification.

Keyword: modal analysis, underdetermined
problem, harmonic excitation.

Tém tét: Cac phuong phép nhéan dang dwa trén
ky thuét tach ngudén mu (BSS) ngay cang thu hat
nhiéu chd y nhw mét cong cu thay thé cho céc ky
thuat nhén dang dao déng. Tuy nhién, viéc trién khai
chuing con chuwa phé bién trong céc (ng dung nhan
dang, dac biét la trong nhiing trurong hop sé luong
c&m bién bj han ché (van dé chwa xéc dinh) hodc khi
c6 mét cla kich déng diéu hoa. Bai bdo dé xuat mét
quy trinh nhan dang dao déng dwa trén ky thuéat BSS
dé xtr ly céc van dé chwa xac dinh hodc duwdi sw hién
dién cta kich doéng diéu hoa. Mé phéng sé va vi du
thure nghiém cho théy réng trong céc tinh hubng chua
Xxac dinh hodc sw hién dién cta kich déng diéu hoa,
phuong phap duwoc dé xuét thuc hién nhan dang
chinh xac va hiéu qua.

T khoa: phén tich dao déng, van dé chuwa xéc
dinh, kich déng diéu hoa.

1. Introduction

One of the main problems in structural dynamics

is to determine the modal parameters, such as

frequency, damping, and modal shape. Among many
modal analysis methods [1], output-only methods
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[2,3] are required when only the structural responses
are available in many situations, when input
measurements are extremely difficult or even
impossible to measure, or when it is impractical to
apply controllable excitations for modal identification
of large-scale structures.

Blind source separation techniques emerged in
the 1990s in the audio field, used to extract individual
sound sources from records. This technique has
become increasingly popular in modal identification
due to their simplicity, efficiency, non-parametric
nature, and no prior information required about the
dynamic system. Two early BSS techniques, namely
independent component analysis (ICA) [4] and
second-order blind identification (SOBI) [5], are
successfully applied to perform output-only modal
identification. However, these methods require the
number of measurements to equal or exceed the
number of operating modes, which may not be
suitable for large-scale structures with a limited
number of measurement sensors.

In addition, a fundamental assumption of
operational modal analysis methods is that external
excitation is white noise. This assumption implies that
the excitation does not drive the system at any
specific frequency and therefore any identified active
frequency reflects the modal response of the
structure. However, in practice, some harmonic
disturbances, such as an adjacent machine operating
at a particular frequency, may drive the structure at
that frequency. Therefore, these components need to
be detected and removed during the modal
identification procedure.

In this study, an enhanced BSS-based
procedure is proposed for OMA suitable for practical
applications. This procedure
estimation of modal parameters, detection and
removal of harmonic excitations. With these main

ensures robust
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objectives, this paper is organized in the following
structure. Section 2 introduces the basic theorem of
BSS, harmonic detection technique and proposed
procedure. Section 3 introduces a novel BSS
method. Numerical example and experimental
validation are carried out in Section 3 and section 4,
respectively. Then, the conclusion is followed in
Section 5.

2. Estimation of modal parameters based on BSS
2.1. Bind source separation (BSS)

BSS is a powerful tool for separating mixed
signals when the source and mixing process are
unknown. The simple form of BSS in the absence of
noise is to determine a mixing matrix and recover the
component sources from their linear mixtures which
can be expressed as follows:

X(t) = AS(t) (1)

The aim of BBS is to extract both the ns original
sources s(t) and the mixing matrix A from the nx
measured mixtures. Depending on the relation
between the number of measurements nx and the
number of sources ns, BSS problems can be

-6 -4 -2 0 2 4 6
x(t)

classified as overdetermined case when nx > ns,
determined case when nx = ns, or underdetermined
case when nx < ns.

Eq. (1) is similar to the classical modal
superposition technique; the vibration measurement
X can be decomposed through the mode shape
matrix ® into single mode response signals q(t):

X ()= ®q() = Y 04,0 @

In order to represent the sparsity of the
measured signals, the Short Time Fourier Transform
(STFT) was applied to Eq. (1).

X(t, f)=AS(t, ) (3)
In the case of two mixtures consisting of three

source components, the above equation can be
expressed as:
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Figure 1. Scatter plot of two mixtures in the time domain (left) and in the time-frequency domain (right)

The original form of the measured mixtures
generally does not fit the assumption about sparsity
in the time domain, but they exhibit the sparsity in
the transformed domain as shown in Figure 1 (each
straight line represents a latent component). The
BSS method is achieved by two main stages: mixing
matrix estimation and source recovery [7]. The first

step is to estimate the mixing matrix A using
clustering techniques [8-10] (hierarchical clustering,
K-means algorithm, Fuzzy C-Means clustering...)
from the scatter plot of the TF coefficients, and then
the source can be recovered using £1-norm
minimization in the Time-Frequency domain (Eq. 5).

S'(t, ) =argmin[|S(t, f)]), subjectto A"S(t, f) = X(t, f) 5)

Finally, source signals (modal responses) can be
reconstructed to the time domain by the inverse short-
time Fourier transform (iSTFT). The modal parameters
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can be identified from recovered signals by using either
single-mode curve fitting in the frequency domain or
logarithmic decrement method in the time domain.
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2.2 Kurtosis
The conventional kurtosis value can be used to
distinguish modal responses and harmonic

components [11-13]. Kurtosis is a measure of the
tailedness of the probability distribution of a real-
valued random variable. The kurtosis is defined as
the fourth central moment of the stochastic variable
as follows [14]:

_ E{x“} "

where E is the expectation operator

The Probability Density Function (PDF) of the
response of a structural mode will be normally
distributed (left part of Fig. 2), and the kurtosis k = 3.
The PDF p is given as follows:
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where y and O are the mean and standard
deviation of x, respectively.

The PDF will have two distinct peaks in the case
of a pure harmonic component (right part of Fig. 2),
and the kurtosis k = 1.5. The PDF p is given as
follows:

0 |x|>a
1

p(x,a)= <
ncos[arcsin (aD

where a is the amplitude of the harmonic

x|<a ®)

component.
1
0.8+
067
= 04+
0.2r
0
3 -2 -1 0 1 2 3

T

Figure 2. Normalized PDF of the response of a structural mode (left) and a harmonic component (right)

2.3 Proposed procedure

The steps in the proposed procedure for
determining the modal parameters and harmonic
components are given as follows:

- Measure structural responses;

- Perform short-time Fourier transform of the
measured signal into the time-frequency domain;

- Apply BSS technique to separate components
(obtain mode shape and mode response in time-
frequency domain), and then recover mode response
to time domain using iSTFT;

2 0
M = - K
o o

The two exact natural frequencies and the three
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damping ratios are presented in Table 1. The system
is subjected to a random excitation accompanied by
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- Distinguish between the harmonic component
and the structural component by the kurtosis value;

- Remove the harmonic components (with
kurtosis value = 3).

3. Numerical test

To illustrate the effectiveness of the proposed
procedure, an example of a 2-DOF mass—spring—
damper system with the mass matrix M, the stiffness
matrix K, and damping matrix C is considered:

0.44

-0.04
—0.04

0.52

a harmonic excitation. Structural responses are
simulated for a duration of 60 s with a sampling rate
of 200 Hz. The responses are presented in Figure 3.
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Figure 3. Simulated signals in the time domain (left) and the frequency domain of 2-dof system

The Modal Assurance Criterion (MAC) is used
to determine the errors of the estimated mode
shapes. The MAC is defined as follows [15]:

(o]®,)
MAC = o @ @, ©

where (I)i and (T)i are the ith reference mode shape
and estimated value, respectively.

The developed technique is performed to

identify ~modal parameters. The individual
components are shown in Figure 4. The identified
modal parameters with their exact values are shown
in Table 1. This indicates that the proposed method is
effective for the underdetermined case (two signals
vs. three latent components) as well as the presence

of harmonic excitation.
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Figure 4. Separated components in the frequency domain

4. Experimental test

In this section, the authors employ an
experiment to validate the effectiveness of the
proposed method. The experiment was conducted at
the Laboratory of Mechanics and Energy of
University Paris-Saclay. The physical parameters of
the beam are the length 1005 mm, the width 42mm,
the height 10mm, Young’s modulus 200 GPa, and
mass density 7850 kg/m3.
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Figure 5. The experimental setup

The data is the acceleration of the beam used
for the operational modal analysis. The authors
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conducted the experimental test as shown in Figure
5. The cantilever beam was simultaneously
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subjected to a random excitation (actuator 1) and a
harmonic loading at 20 Hz (actuator 2). The
structural responses were collected using three B&K
Type 4533-B-001accelerometers mounted along the
beam at a sampling rate of 2048 Hz. The
measurements are shown in Fig. 6. The proposed
procedure is then applied to the measured data.
Scatter plot of two signals in the time domain (left)
and in the time-frequency domain (right) of Fig. 7.
The original form of signals does not fit the sparsity
assumption, but it shows approximately directions of

0 10 20 30 40 50 60 70 80 9 100
t(s)

four straight lines in the transformed (three structural
modes and a harmonic component). The separated
components are shown in Fig. 8. Modal parameters
are well identified by the proposed procedure
compared to the reference results [13] (Table 1).

The analysis results show that the enhanced
method is capable of analyzing vibration signals,
accurately determining mode
underdetermined problems and the presence of
harmonic excitation.
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Figure 6. Measured signals in the time domain (left) and the frequency domain (right)
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Figure 7. Scatter plot of two signals in the time domain (left) and in the time-frequency domain (right)
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Figure 8. Separated components in the frequency domain
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Table 1. Modal parameters estimated by the proposed method

Reference values

Identified values

Test Mode f(Hz) f %) f(Hz) f (%) MAC Kurtosis Conclusion
T 1 2.436 0.69 2.43 0.69 1,00 2.95 Structural
E E@ 2 5.88 0.36 5.88 0.36 1,00 2.98 Structural
= 3 10,00 - 10,00 - - 1.50 Harmonic
= 1 7.28 1.11 7.28 1.10 0.98 3.01 Structural
E 3 2 20,00 - 19.99 - - 1.56 Harmonic
§H 3 46.54 0.32 46.51 0.29 0.99 3.14 Structural
- 4 130.60 0.52 130.67 0.53 0.99 3.08 Structural

5. Conclusions

This study proposes a BSS based method to
perform output-only modal identification. The method
presumes that sources are sparsely represented in
the transformed domain. The sparse representation
of the measured signals in the transformed domain
allows the estimation of the mode shape matrix using
a clustering algorithm. The modal responses can
then be estimated by minimizing the £1-norm
minimization.

Compared with the existing BSS-based modal
analysis method, the proposed method is not only
suitable for the determined cases but also capable of
identifying the modal parameters when the sensor is
limited compared to the number of active modes,
even in the presence of harmonic excitations.

Both numerical and experimental studies
confirm the effectiveness of the proposed method in
identifying structural modes. It is also shown to be
robust to random excitation and harmonic excitation.
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