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Abstract: Bearing capacity is one of the most 

important parameters when designing piles. 

However, determining the exact bearing capacity of 

piles is a difficult job due to the influence of many 

parameters. The traditional methods of calculating 

the axial load capacity of piles all use a predefined 

problem, that is, determining only a single load 

capacity value, which is not entirely consistent with 

the actual working of the piles, where the input 

parameters affecting the bearing capacity of the piles 

are random. In this study, an advanced machine 

learning model based on artificial intelligence, the 

Random Forest, was developed and applied to 

predict the bearing capacity of piles. This model is 

used as a predefined model applied in the Monte-

Carlo simulation method to determine the reliability of 

the pile-bearing capacity. The results show that the 

Random Forest model very well predicts the bearing 

capacity of piles on both training and testing data. In 

addition, the Monte-Carlo simulation results with 

random soil data show that there is still the possibility 

of unsafe pile operation even when the pile top load 

is lower than the expected average bearing capacity 

of the pile. Furthermore, the maximum load to the top 

of the pile should not exceed 99.2% of the mean load 

value, to achieve a high probability of safe working, 

on this data set.  

Keywords: Axial bearing capacity of piles, 

machine learning, random forest, reliability, Monte 

Carlo simulation. 

Tóm tắt: Sức chịu tải là một trong những tham số 

quan trọng nhất khi thiết kế cọc. Việc xác định chính 

xác giá trị sức chịu tải cọc trong quá trình thiết kế giúp 

giảm nhiều chi phí và công sức. Tuy vậy, việc xác 

định đúng sức chịu tải của cọc là một việc khó khăn 

do bị ảnh hưởng bởi rất nhiều tham số. Các phương 

pháp tính toán sức chịu tải dọc trục của cọc hiện nay 

đều sử dụng bài toán tiền định, tức là chỉ xác định 

một giá trị sức chịu tải duy nhất, điều đó chưa hoàn 

toàn phù hợp với sự làm việc thực tế của cọc, khi mà 

các tham số ảnh hưởng đến sức chịu tải cọc đều 

mang tính ngẫu nhiên.Trong nghiên cứu này, mô 

hình máy học tiên tiến là rừng ngẫu nhiên được phát 

triển và ứng dụng để dự đoán sức chịu tải của cọc. 

Mô hình này được sử dụng như là mô hình tiền định 

ứng dụng trong phương pháp mô phỏng Monte-Carlo 

để từ đó xác định được độ tin cậy của sức chịu tải 

cọc. Các số liệu tính toán được lấy từ kết quả thí 

nghiệm nén tĩnh cọc tại Việt Nam. Các thông số đầu 

vào về đất nền và cọc được đo đạc tại hiện trường và 

mang tính ngẫu nhiên, phân tán. Việc dự đoán sức 

chịu tải có xét đến độ tin cậy đang trở thành một xu 

hướng nghiên cứu nhằm phản ánh sát thực hơn sự 

làm việc của kết cấu móng và giải quyết các vấn đề 

trong kỹ thuật xây dựng. 

Từ khóa: Sức chịu tải dọc trục của cọc, máy học, 

rừng ngẫu nhiên, độ tin cậy. 

1. Introduction  

A pile foundation is a type of structure that is 

widely used as a support structure in civil works, 

bridges and roads, irrigation and specially used in 

high-rise buildings. Pile foundation has the 

advantage of large load capacity, and diverse 

construction methods (boring, driving, and static 

jacking). Piles are usually designed to work in 

compression and the maximum compressive force 

the pile can withstand without failure is called the 

ultimate pile load capacity. In favor of safety, the 

ultimate bearing capacity of the pile is usually taken 

by the destructive compressive force according to the 

ground soil, but not according to the pile material. 

During the working process, the bearing capacity of 

the pile depends on two components, which are 

lateral friction and the pile's tipping force in the 

extreme state.  
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To determine the bearing capacity of piles, field 

test methods are considered to have higher reliability, 

some of which can be mentioned as follows: (1) Field 

static compression method [1]; (2) method of 

dynamic load test PDA [2]; self-balancing method 

using load box Osterberg [3], [4]. The methods give 

reliable results but have the disadvantage of being 

time-consuming and expensive, making it impossible 

to mass-produce on a large number of piles. 

Therefore, several methods have been proposed to 

calculate the bearing capacity of piles, using semi-

empirical formulas. These methods are built from 

empirical formulas, mainly based on the geometrical 

parameters of the piles and geological parameters 

obtained from the results of the SPT (Standard 

Penetration Test), and CPT test (Cone Penetration 

Test) [5]–[7]. With the development of the finite 

element method, many authors have calculated the 

bearing capacity of piles and soil simulating the 

working of piles-soil and approximating it by software 

such as Abacus, Plaxis, and Ansys [8], [9]. However, 

these methods have the disadvantage that the model 

is relatively sensitive to the input parameters and the 

calculation results still need to be adjusted relative to 

converge with the pile load test results. In addition, 

the parameters affecting the pile bearing capacity, 

especially the parameters of the foundation, are 

random and distributed [10], [11]. For example, the 

SPT and CPT values of the soil are not constant but 

change continuously within a soil layer, or the 

thickness of the soil layer at different locations is not 

the same. That has not been considered much in 

previous studies, leading to the results of the 

calculation of the pile-bearing capacity are still 

subjective and not general. Also, from a random point 

of view, the pile still has some probability of failure. 

Therefore, considering the working reliability of piles 

is of great practical significance. 

In recent years, along with the development of 

the 4th industrial revolution, machine learning models 

based on large databases have achieved great 

success [12]–[16]. In many cases, machine learning 

models give more impressive results and are much 

closer to experimental results than traditional models 

[17]. Therefore, the application and development of 

advanced machine learning models in the pile-

bearing capacity problem is a scientific and practical 

issue. However, Machine Learning models are all 

based on a set of random parameters. Some studies 

have mentioned the influence of these random 

parameters on the stability of the model. For 

example, Some works of literature [18]–[20] take into 

account the effect of random data division on the 

stability of machine learning models. Pham and Tran 

(2022) [13] consider the effect of random initialization 

of weights on the results of pile-bearing capacity 

analysis, by a random forest model optimized with a 

genetic algorithm. Pham et al (2021) [16], Menz et al 

(2020) [21]used the Monte-Carlo simulation method 

to evaluate the importance of the input variables to 

the model accuracy. 

The research on the application of machine 

learning in solving the pile foundation problem 

mentioned above only stops at predefining the model 

or assessing the influence of the randomness of the 

model's parameters on the stability of the model. 

Furthermore, studies have not clarified the effect of 

the randomness of soil data, a very important input 

parameter for pile load capacity analysis. In essence, 

the characteristics of the soil around the piles are not 

the same, even large changes are in the same soil 

layer [22], [23]. Therefore, the stability assessment 

when determining the bearing capacity of piles with 

random soil data should be considered specifically. 

In this study, a method of calculating the pile-

bearing capacity of piles is presented by combining a 

machine learning model named Random Forest and 

a Monte Carlo simulation method for evaluation. The 

initial research results show that the model can 

estimate relatively accurately the pile-bearing 

capacity and determine the dispersion of the load 

capacity parameter when the ground soil parameter 

is random, thereby calculating the reliability of the 

pile-bearing capacity. 

2. Research methods 

2.1 Random Forest model 

2.1.1 Decision Tree model 

The decision tree model is a supervised learning 

model that can be applied to both classification and 

regression problems. This model is the basis of 

several more advanced machine learning models, for 

example, Random Forests, gradient-enhanced trees, 

etc. 
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In the decision tree model, the architecture of the 

decision tree model can be thought of as a sequence 

of if_then_else functions, depending on the input 

data set, the complexity of the tree, and the depth of 

the if the function is calculated and optimized. In 

addition, each internal node corresponds to an input 

variable (e.g x1, x2, x3, etc.); the line connecting it and 

its children represent a specific value for that 

variable. Each leaf node represents the predicted 

output of the model (e.g R1, R2, R3, etc.), given the 

values of the variables represented by the path from 

the root node to that leaf node.

 

 
Figure 1. A typical decision tree model used in pile load forecasting 

 

The machine learning technique used in decision 

trees is known as decision tree learning, or simply 

called a decision tree for short. A typical regression 

decision tree model is presented above. Decision 

tree models are widely used in practice because of 

their fast training and prediction speed. The training 

of a decision tree is to determine the hierarchies of 

nodes, branches and leaves on the tree. Since only 

logical conditional functions (if_then) are used, no 

arithmetic computation is required, so decision trees 

have the advantage of fast mining and prediction 

speed. However, this model often suffers from 

overfitting, when the nodes of the model cover the 

training data set, it will have low performance when 

used to predict the test set or the new model data. 

That spurs the development of more advanced 

models based on decision trees, random forest 

models, gradient enhancement trees being one of 

them. Another disadvantage of the decision tree 

model is that it only allows predictions in the range 

[min; max] of the learning data and will give false 

results when the input variables are out of range of 

that learning data  

2.2.2  Random Forest - RF 

Random Forest (RF) is a Machine learning model 

based on a decision tree, which can be used flexibly 

and easily for both classification and regression. RF 

model is also a type of ensemble model, in which, the 

decision tree is considered a member model of this 

ensemble model. In essence, RF creates a decision 

tree on randomly selected data samples, called a 

random sample encapsulation process (Bootstrap 

technique). This randomization process will: (1) 

Generate a random dataset based on the original 

data set; (2) Generate several trees with random 

parameters to learn those datasets. This technique 

will help the RF model avoid overfitting problems from 

the decision tree model. 

Predictions from each tree are generated and the 

best solution is selected by polling (with classification) 

or averaging (with regression). If in a single decision 

tree algorithm, when building a decision tree to an 

arbitrary depth, the tree will correctly classify all the 

data in the training set, leading to a poor prediction 

model on the test dataset. control, then the model is 

overfitting (the model is overfitting when it predicts well 
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on the training data, but poorly on the test data). 

Meanwhile, the Random Forest algorithm consists of 

many decision trees, each of which has random 

elements of sampling. Because each decision tree 

does not use all the training data, as well as the 

attributes of the data to build the tree, each tree can 

make bad predictions, then each decision tree model 

is not overfitting but can be underfitting (the model has 

high bias). However, the final result of the Random 

Forest algorithm is aggregated from many decision 

trees, so the information from the trees will 

complement each other, leading to the model having 

"low bias" and "low variance", or The model having 

good predictive results.

 

 
Figure 2. Random Forest model 

 

The general formula of the model is written in the 

following form: 

    

M

i

i 1

F(x) (x)


               (1) 

Where F(x) is the predicted value of the output 

model, 𝛾𝑖(𝑥) is the ith decision tree and M is the total 

number of trees. 

Because the decision trees are built 

independently, the training process can be carried 

out in parallel, so the random forest model is one of 

the combinatorial models that need the shortest 

training time due to the use of computer's 

multithreading. 

2.2 Data used 

In problems using machine learning models, the 

training data is considered the most important 

parameter. Usage data needs to be collected and 

processed to eliminate unusual variables. Existing 

studies on the determination of pile load capacity 

often suggest including the parameters of the 

geometric dimensions of the pile as well as the soil 

parameters to be included in the calculation. 

Meyerhof (1963) [5], Shioi (1982)[6], and Decourt 

(1995)[24] propose to use parameters related to the 

geometric dimensions of the pile and the average 

SPT indexes along the pile body and at the pile tip to 

calculate the pile bearing capacity. The soil SPT 

index is one of the most popular tests, so soil 

properties are characterized through SPT results. In 

this study, the average SPT value along the pile body 

and pile tip is taken as the main parameter to 

determine the bearing capacity of the pile. In addition, 

the parameters of the pile shape, size, and thickness 

of the soil layers were also collected and statistically 

evaluated to evaluate the bearing capacity of the pile. 

Therefore, this study proposes the parameters 

of geological conditions, size, shape, and size of piles 

[25]. Specifically, the data were collected from a 

published study [13], in which pile tests were 

conducted in a neighborhood to evaluate the effect of 

the randomness of soil data on the bearing capacity 

of piles. The input parameters include (i) the 

Diameter of the pile (Y1); (ii) the Thickness of soil 

Original dataset 

Boostrap 

technique 

… 

Tree 1 Tree 2 Tree n 

Y1 Y2 Yn 

Y = Mean(Yi) 



ĐỊA KỸ THUẬT - TRẮC ĐỊA 

 

Tạp chí KHCN Xây dựng - số 2/2023                                                                                                47 

layer 2 (Y2); (iii) the Thickness of soil layer 4 (Y3); (iv) 

the Thickness of soil layer 4(Y4); (v) pile top elevation 

(Y5); (vi) natural ground elevation (Y6); (vii) driving 

stop height of guide pile section (Y7); (viii) pile tip 

height (Y8); (ix) average SPT value along the pile 

body length (Y9) and (x) average SPT value at pile tip 

(Y10). Diagrams of parameters are shown in Figure 3. 

These parameters are random statistics in Table 1. 

The bearing capacity of the pile is the output 

parameter (Pu).

 

 
Figure 3. Diagram of pile parameters [13] 

 

The dataset is divided into 2 sets of training and 

testing data. The number of training samples is 80% 

and the test sample is 20% of the total. The training 

random statistics must be large enough to ensure the 

efficiency and reliability of the model. The training 

data consisting of 10 input parameters and 1 output 

parameter is normalized to ensure that the variables 

have the same influence. To ensure that the input 

parameters have the same significance and 

importance for the random forest model in 

determining the pile bearing capacity, the input data 

are normalized in the interval [0,1], The normalized 

formula for the value of 
iX is written as follows: 

i

norm max i

max min

X X
X

X X





     (2) 

Where 
i

normX  is the normalized value of iX ; 

max minX ,X are the maximum and minimum values 

of the variable X.
 

Table 1. Inputs and output of the present study 

No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Pu 

Unit m m m m m m m m - - MN 

1 0.40 4.35 8.00 1.00 2.05 3.48 2.08 15.40 13.35 7.50 1.40 

2 0.30 3.40 5.25 0.00 3.40 3.47 3.42 12.05 8.65 6.75 0.56 

3 0.30 3.40 5.30 0.00 3.40 3.52 3.42 12.10 8.70 6.76 0.51 

4 0.40 4.25 8.00 0.90 2.15 3.56 2.26 15.30 13.15 7.61 1.40 

Y
1
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Soil layer 2 
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5 0.40 3.40 7.30 0.00 3.40 3.49 3.39 14.10 10.70 7.28 1.07 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

471 0.30 3.40 5.26 0.00 3.40 3.49 3.43 12.06 8.66 6.75 0.51 

472 0.40 3.85 7.60 0.00 2.95 3.67 3.27 14.40 11.45 7.15 1.43 

Min 0.30 3.40 1.50 0.00 0.68 3.04 1.03 8.30 5.60 4.38 0.41 

Max 0.30 3.40 1.50 0.00 0.68 3.04 1.03 8.30 5.60 4.38 1.551 

Average 0.36 3.83 6.58 0.33 2.80 3.50 2.92 13.54 10.74 7.06 0.98 

SD* 0.00 0.35 0.28 0.71 0.64 0.13 0.84 0.71 1.34 0.25 0.02 

* Standard deviation 

 

2.3 Performance evaluation 

In this study, three statistical criteria, namely the 

correlation coefficient (R2), Root Mean Square Error 

(RMSE), and Mean Absolute Error (MAE) are used to 

evaluate the performance of models [26]. In which, 

the correlation between the actual value and the 

predicted value is expressed by R2. Conversely, a 

higher R2 value means better model performance. 

The R2 value varies between -∞ and 1, and the closer 

R2 is to 1, the more accurate the model is. A value of  

R2 less than 0 represents a negative correlation 

between the forecast results and the actual results of 

the data. RMSE and MAE are used to evaluate the 

error between the actual value and the predicted 

value. Specifically, the criteria related to the mean 

error such as RMSE, and the lower the MAE, the 

higher the accuracy of the model and the better the 

performance of the model.  

The formula to determine R2, RMSE, and MAE is 

as follows: 

 
k

2

i i

i=1

1
RMSE = -

k
y y                   (3) 

 

 

k
2

i i

2 i=1

k
2

i

i=1

y -

R = 1-

y -

y

y




      (4) 

k

i i

i=1

1
MAE = y - y

k
       (5) 

Where: k is the number of tuples, yi and 
i

y is the 

actual data measured and the data predicted by the 

model; y is the mean value of
iy . 

2.4 Reliability analysis 

To calculate the reliability of the works, these 

include: collecting data about the work, statistical 

analysis, generating random variables, setting up the 

confidence function, analyzing the relationship 

between the works in the system, reliability of the 

works, and the reliability of the system of works [27], 

[28].  Depending on the complexity, the calculation 

requirements, the importance level, and the ability to 

provide observation data and design data about the 

building to be able to solve the problem of calculating 

the reliability of the work and construction system at 

different levels. When considering the geometrical 

parameters of the pile and the soil parameters as 

random quantities, the value of the bearing capacity 

of the piles and the pile group is also a random 

quantity. Therefore, this study selects the parameters 

related to the geometrical dimensions of the pile and 

the characteristic parameters for the ground soil to 

use in the simulation problem to determine the 

reliability of the pile-bearing capacity. 

The iterative calculation is performed on the 

analytical model of the pile, based on the statistical 

characteristics and the distribution rules of input 

parameters using Monte-Carlo simulation [27], [29]. 

The basic idea behind the Monte Carlo method is to 

use random sampling to obtain numerical solutions to 

problems that are too difficult or impossible to solve 

analytically. The method involves generating a large 

number of random samples or simulations of a 

system or process and analyzing the results to obtain 

estimates of the system's behavior. Therefore, with 

each iteration of the Monte-Carlo simulation 

progress, random values of the input variables are 

generated according to the distribution law and within 

the allowed range. Based on the obtained data set, 

the statistical characteristics of the results as follows: 
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𝑆 =
1

𝑀
. ∑ 𝑆𝑖

𝑀
𝑖=1          (6) 

𝜎𝑥 = √
1

𝑀−1
[∑ 𝑆𝑖

2 −
1

𝑀
(∑ 𝑆𝑖

𝑀
𝑖=1 )2𝑀

𝑖=1 ]      (7) 

Where, M – is the number of iterations (number 

of input trials); 𝑆 – is the mathematical expectation of 

S; 𝜎𝑥 – is the standard deviation of S; Si – is the value 

of S obtained in the calculation with the ith solution of 

the input data. 

The reliability of the value of internal force S is 

determined by the formula: 

tk

x

S S
P ( )


 


    (8) 

Where: (x)  – In this study, it is assumed that the 

pile-bearing capacity follows the normal distribution, 

so (x)  is a normal distribution function; Stk – is the 

design value of S. 

                 
2z

2

x
1

(x) e dz
2





 

          (9) 

3. Results and Discussion 

3.1 Input data 

 Before analysis, input data needs to be analyzed 

and processed. The distribution of the data is shown 

in Figure 4. The distribution characteristics of the 

input parameters include the geometrical dimensions 

of the pile, the soil characteristics determined 

according to the normal distribution, and the 

calculation of the parameters. the number of standard 

deviations. It can be seen that the data variables are 

distributed in a relatively wide and general range, 

while the parameter of pile diameter (Y1) shows that 

the amount of pile D400 seems to be larger than that 

of pile D300, although So the number of piles in each 

group is also large enough to serve the training of the 

model. The bearing capacity of piles D300 and D400 

can be approximated according to the Gauss 

distribution.
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Figure 4. Histogram of all input and output variables 

 

In addition, the correlation of the variables is 

shown Table 2. It can be seen that most of the 

variables have a small correlation with each other 

(below 0.8), showing that the variables have a linearly 

independent relationship. Some variables have a 

greater correlation (above 0.8) showing that they 

have a linear dependent relationship, this study 

temporarily does not consider that issue but will 

continue to be interested in future studies. The 

formula for calculating the correlation coefficient 

between variables is written as follows: 

n

i i

i 1
x,y

2 2n n

i i

i 1 i 1

(x X)(y Y)

r

(x X) (y Y)



 

 



 



 

   (10) 

where: X,Y - are the average values of the two 

variables x, y; n - is the number of samples of the 
variable x, y; 

The correlation coefficient is in the range [0,1], 

The closer this coefficient is to zero, it means that the 

variables have a linearly self-sufficient relationship 

and vice versa is linearly self-sufficient.

 
Table 2. Correlation matrix of input and output variables 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Pu 

Y1 1.00           

Y2 0.67 1.00          

Y3 0.62 0.45 1.00         

Y4 0.55 0.74 0.63 1.00    sym    
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Y5 -0.73 -0.96 -0.59 -0.85 1.00       

Y6 0.31 0.20 0.31 0.14 -0.20 1.00      

Y7 -0.63 -0.79 -0.51 -0.91 0.87 -0.08 1.00     

Y8 0.63 0.53 0.99 0.74 -0.67 0.30 -0.61 1.00    

Y9 0.70 0.69 0.95 0.81 -0.81 0.30 -0.73 0.98 1.00   

Y10 0.36 0.23 0.93 0.62 -0.41 0.23 -0.42 0.93 0.84 1.00  

Pu 0.84 0.68 0.85 0.61 -0.76 0.34 -0.59 0.85 0.88 0.66 1.00 

 

3.2 Results model of training 

 In this study, the Random Forest model is built 

and trained based on the Sklearn library in the Python 

programming language platform [30]. The model is 

put into development against the training dataset and 

then retested against the test dataset with default 

model hyper-parameters. The results of training and 

testing the model are shown in Figure 5 và Table 3. 

It can be seen that the predictive capacity of the 

model is perfect when the correlation coefficient R2 is 

above 0.95 for both training and testing datasets. In 

addition, the error criteria such as RMSE and MAE 

on both data sets are small and the difference is not 

much, showing that the model has high 

generalizability and avoids overfitting. This is further 

confirmed by the model's error chart on the train and 

test sets in Figure 6, where the errors are mostly in 

the range[-4%, 6%].

 

 
Figure 5. The regresion chart predicts the bearing capacity of piles 

 
Figure 6. Histogram of errors on the Training set and Testing set 

 
Table 3. Calculation results of the pile-bearing capacity of the model 

Training set Testing set 

R2 RMSE (MN) MAE (MN) R2 RMSE (MN) MAE (MN) 

0.967 0.055 0.045 0.950 0.073 0.056 
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3.3 Calculation of reliability of pile-bearing 

capacity 

As analyzed above, the calculation of pile load 

capacity based only on fixed parameters of pile shape, 

size, and foundation parameters is not completely 

consistent with reality. On the construction site, the 

parameters related to the soil thickness are not the 

same at all locations, in addition, even within a soil 

layer, the SPT value fluctuates within a certain range. 

Therefore, when calculating the pile bearing capacity, 

random parameters of the ground soil will make the 

pile load capacity not completely constant but will 

change in a certain range. That would make the design 

of piles less secure and although this is partly 

addressed through reliability coefficients, detailed 

analysis of the probability of safety or danger in a 

particular area is also something to consider carefully. 

Therefore, in this section, it is proposed to use the 

Monte Carlo simulation method to calculate the pile-

bearing capacity, considering the randomness of the 

soil data. The soil parameters selected for use in the 

simulation are shown in Table 4. A note is that in each 

simulation iteration, the values of the input variables 

are generated according to the normal distribution to 

be included in the calculation of the pile-bearing 

capacity.

 
Table 4. Calculation results of the pile-bearing capacity of the model RF 

Input 
parameter 

Mean value 
Standard Deviation 

(SD) 
Percentage of (SD/Mean) 

(%) 
Y2 3.83 0.482 13 
Y3 6.58 1.638 25 
Y5 2.80 0.616 22 
Y6 3.50 0.080 2 
Y7 2.92 0.599 21 
Y8 13.54 1.798 13 
Y9 10.74 2.264 21 
Y10 7.06 0.660 9 

 

 
Figure 7. Cycle diagram of simulation 

 

In this study, because the data set has 2 types of 

piles D300, and D400 because each type of pile has 

only a different reliability, the simulation needs to be 

conducted separately for each type. In this study, 

type D400 was selected for simulation. The number 

of simulation iterations is determined according to the 

convergence condition. When the convergence 

criterion function is almost unchanged after a certain 

number of simulation iterations, the simulation 

problem can be considered to be stable and stop the 

iteration. The convergence condition is defined as: 

           

n

MC i

i 1

1 1
f G 1

nG 

               (11) 

Where: G - is the expected value of pile load 

capacity; n - is the number of simulations. 

The results of the Monte-Carlo simulation to 

calculate the pile load capacity are shown in Figure 

8. It can be seen that after about 300 iterations, the 

simulation converged.

Generate a random 

variables [Yi]

Calculation of pile 
bearing capacity using 

the RF model

Calculation of 
convergence conditions

Stop when reaching the 
condition
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Figure 8. Statistical convergence analysis 

 
Figure 9. Histogram of piles bearing capacity from Monte-Carlo simulation 

 

Figure 9 shows the pile design load distribution 

chart, with the safety factor FS=2, the analysis shows 

that the mean expected value of the pile-bearing 

capacity is Pu 0.63(MN) with standard deviation 

0.069  . 

To make sure a reliability level of at least X%, the 

load on the top of the pile should not exceed Pmax, 

where Pmax is determined such that: 

       maxPu P
P 0.01X

  
   

  
       (12) 

Therefore, an investigation of some typical 

reliability is conducted and the results are shown in 

Figure 10.

  

 
Figure 10. Probability of safe working of piles according to Pmax 
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It can be seen that, if Pmax lower than 98.5% of 

Pu , the probability of safe working of piles is almost 

maximally above 92%, and when the pile top load is 

greater than 101.6% of Pu , the remaining stop 

reliability is determined to be less than 7.36%. The 

probability of safe working threshold of the pile is Pmax 

less than 99.2% of Pu , then the safe working 

probability of the pile reaches at least 76.5%. 

4. Conclusion 

The study shows that the machine learning-

based random forest model is a great tool for 

predicting pile-bearing capacity. The accuracy of the 

model on both the existing training and test data is 

excellent, demonstrating that the model is highly 

generalizable to the data. 

The use of a Random Forest model to calculate 

the working reliability of the piles considering the 

randomness of the soil data shows that the pile still 

has a certain probability of failure, even when the pile 

top load does not exceed the mean value of the pile 

load capacity. To achieve high pile working reliability 

[76.5÷100]%, the maximum load to the top of the pile 

should be less than 99.2% of the mean pile-bearing 

capacity. 

The method of calculating the bearing capacity of 

piles using the random forest model can be 

considered reliable. This model can be used in 

calculating the reliability of piles, thereby evaluating 

pile performance more objectively when considering 

the randomness of the input parameters. 
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