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Abstract: Bearing capacity is one of the most
important parameters when designing piles.
However, determining the exact bearing capacity of
piles is a difficult job due to the influence of many
parameters. The traditional methods of calculating
the axial load capacity of piles all use a predefined
problem, that is, determining only a single load
capacity value, which is not entirely consistent with
the actual working of the piles, where the input
parameters affecting the bearing capacity of the piles
are random. In this study, an advanced machine
learning model based on artificial intelligence, the
Random Forest, was developed and applied to
predict the bearing capacity of piles. This model is
used as a predefined model applied in the Monte-
Carlo simulation method to determine the reliability of
the pile-bearing capacity. The results show that the
Random Forest model very well predicts the bearing
capacity of piles on both training and testing data. In
addition, the Monte-Carlo simulation results with
random soil data show that there is still the possibility
of unsafe pile operation even when the pile top load
is lower than the expected average bearing capacity
of the pile. Furthermore, the maximum load to the top
of the pile should not exceed 99.2% of the mean load
value, to achieve a high probability of safe working,
on this data set.

Keywords: Axial bearing capacity of piles,
machine learning, random forest, reliability, Monte
Carlo simulation.

Tém tat: Sure chjiu tdi la mét trong nhing tham sé
quan trong nhét khi thiét ké coc. Viéc xac dinh chinh
Xac gid trj strc chju tai coc trong qua trinh thiét ké gitp
gidm nhiéu chi phi va céng strc. Tuy vy, Vviéc xac
dinh dung strc chju tdi cda coc la mét viéc kho khédn
do bj &nh huéng bai rat nhiéu tham sé. Céc phuong
phap tinh toan strc chju tai doc truc cda coc hién nay
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déu sir dung bai toan tién dinh, tic la chi xéc dinh
mét gid trj stic chju tai duy nhét, diéu dé chuwa hoan
toan phu hop véi swlam viéc thuc té cda coc, khi ma
cac tham sé &nh hudéng dén strc chju tai coc déu
mang tinh ng4u nhién.Trong nghién ciu nay, mo
hinh may hoc tién tién |1a rimg ngdu nhién duwoc phét
trién va gng dung dé duw doén surc chju tdi cda coc.
M6 hinh nay dwoc st dung nhw la mé hinh tién dinh
tmg dung trong phuwrong phap mé phéng Monte-Carlo
dé ttr dé xac dinh duoc dé tin cdy cua st chju tai
coc. Cac sé liéu tinh toan duoc lay tir két qud thi
nghiém nén tinh coc tai Viét Nam. Cac théng sé dau
vao vé dét nén va coc duoc do dac tai hién trurong va
mang tinh ng4u nhién, phan tan. Viéc dw doan sic
chju tai cé xét dén do tin cdy dang tré thanh mét xu
hwéng nghién ciu nhdm phén anh sét thue hon sw
lam viéc cua két cdu méng va gidi quyét cac van dé
trong ky thuat xay dung.

T khoa: Stre chju tdi doc truc cda coc, may hoc,
remng ngéu nhién, dé tin cay.

1. Introduction

A pile foundation is a type of structure that is
widely used as a support structure in civil works,
bridges and roads, irrigation and specially used in
high-rise  buildings. Pile foundation has the
advantage of large load capacity, and diverse
construction methods (boring, driving, and static
jacking). Piles are usually designed to work in
compression and the maximum compressive force
the pile can withstand without failure is called the
ultimate pile load capacity. In favor of safety, the
ultimate bearing capacity of the pile is usually taken
by the destructive compressive force according to the
ground soil, but not according to the pile material.
During the working process, the bearing capacity of
the pile depends on two components, which are
lateral friction and the pile's tipping force in the
extreme state.
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To determine the bearing capacity of piles, field
test methods are considered to have higher reliability,
some of which can be mentioned as follows: (1) Field
static compression method [1]; (2) method of
dynamic load test PDA [2]; self-balancing method
using load box Osterberg [3], [4]. The methods give
reliable results but have the disadvantage of being
time-consuming and expensive, making it impossible
to mass-produce on a large number of piles.
Therefore, several methods have been proposed to
calculate the bearing capacity of piles, using semi-
empirical formulas. These methods are built from
empirical formulas, mainly based on the geometrical
parameters of the piles and geological parameters
obtained from the results of the SPT (Standard
Penetration Test), and CPT test (Cone Penetration
Test) [5]-[7]. With the development of the finite
element method, many authors have calculated the
bearing capacity of piles and soil simulating the
working of piles-soil and approximating it by software
such as Abacus, Plaxis, and Ansys [8], [9]. However,
these methods have the disadvantage that the model
is relatively sensitive to the input parameters and the
calculation results still need to be adjusted relative to
converge with the pile load test results. In addition,
the parameters affecting the pile bearing capacity,
especially the parameters of the foundation, are
random and distributed [10], [11]. For example, the
SPT and CPT values of the soil are not constant but
change continuously within a soil layer, or the
thickness of the soil layer at different locations is not
the same. That has not been considered much in
previous studies, leading to the results of the
calculation of the pile-bearing capacity are still
subjective and not general. Also, from a random point
of view, the pile still has some probability of failure.
Therefore, considering the working reliability of piles
is of great practical significance.

In recent years, along with the development of
the 4" industrial revolution, machine learning models
based on large databases have achieved great
success [12]-[16]. In many cases, machine learning
models give more impressive results and are much
closer to experimental results than traditional models
[17]. Therefore, the application and development of
advanced machine learning models in the pile-
bearing capacity problem is a scientific and practical
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issue. However, Machine Learning models are all
based on a set of random parameters. Some studies
have mentioned the influence of these random
parameters on the stability of the model. For
example, Some works of literature [18]-[20] take into
account the effect of random data division on the
stability of machine learning models. Pham and Tran
(2022) [13] consider the effect of random initialization
of weights on the results of pile-bearing capacity
analysis, by a random forest model optimized with a
genetic algorithm. Pham et al (2021) [16], Menz et al
(2020) [21]used the Monte-Carlo simulation method
to evaluate the importance of the input variables to
the model accuracy.

The research on the application of machine
learning in solving the pile foundation problem
mentioned above only stops at predefining the model
or assessing the influence of the randomness of the
model's parameters on the stability of the model.
Furthermore, studies have not clarified the effect of
the randomness of soil data, a very important input
parameter for pile load capacity analysis. In essence,
the characteristics of the soil around the piles are not
the same, even large changes are in the same soil
layer [22], [23]. Therefore, the stability assessment
when determining the bearing capacity of piles with
random soil data should be considered specifically.

In this study, a method of calculating the pile-
bearing capacity of piles is presented by combining a
machine learning model named Random Forest and
a Monte Carlo simulation method for evaluation. The
initial research results show that the model can
estimate relatively accurately the pile-bearing
capacity and determine the dispersion of the load
capacity parameter when the ground soil parameter
is random, thereby calculating the reliability of the
pile-bearing capacity.

2. Research methods
2.1 Random Forest model
2.1.1 Decision Tree model

The decision tree model is a supervised learning
model that can be applied to both classification and
regression problems. This model is the basis of
several more advanced machine learning models, for
example, Random Forests, gradient-enhanced trees,
etc.
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In the decision tree model, the architecture of the
decision tree model can be thought of as a sequence
of if_then_else functions, depending on the input
data set, the complexity of the tree, and the depth of
the if the function is calculated and optimized. In
addition, each internal node corresponds to an input

No

Pile diameter
<0.5m

variable (e.g i, X2, X3, €tc.); the line connecting it and
its children represent a specific value for that
variable. Each leaf node represents the predicted
output of the model (e.g R1, Rz, Rs, etc.), given the
values of the variables represented by the path from
the root node to that leaf node.
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length>30
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Figure 1. A typical decision tree model used in pile load forecasting

The machine learning technique used in decision
trees is known as decision tree learning, or simply
called a decision tree for short. A typical regression
decision tree model is presented above. Decision
tree models are widely used in practice because of
their fast training and prediction speed. The training
of a decision tree is to determine the hierarchies of
nodes, branches and leaves on the tree. Since only
logical conditional functions (if_then) are used, no
arithmetic computation is required, so decision trees
have the advantage of fast mining and prediction
speed. However, this model often suffers from
overfitting, when the nodes of the model cover the
training data set, it will have low performance when
used to predict the test set or the new model data.
That spurs the development of more advanced
models based on decision trees, random forest
models, gradient enhancement trees being one of
them. Another disadvantage of the decision tree
model is that it only allows predictions in the range
[min; max] of the learning data and will give false
results when the input variables are out of range of
that learning data
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2.2.2 Random Forest - RF

Random Forest (RF) is a Machine learning model
based on a decision tree, which can be used flexibly
and easily for both classification and regression. RF
model is also a type of ensemble model, in which, the
decision tree is considered a member model of this
ensemble model. In essence, RF creates a decision
tree on randomly selected data samples, called a
random sample encapsulation process (Bootstrap
technigue). This randomization process will: (1)
Generate a random dataset based on the original
data set; (2) Generate several trees with random
parameters to learn those datasets. This technique
will help the RF model avoid overfitting problems from
the decision tree model.

Predictions from each tree are generated and the
best solution is selected by polling (with classification)
or averaging (with regression). If in a single decision
tree algorithm, when building a decision tree to an
arbitrary depth, the tree will correctly classify all the
data in the training set, leading to a poor prediction
model on the test dataset. control, then the model is
overfitting (the model is overfitting when it predicts well
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on the training data, but poorly on the test data).
Meanwhile, the Random Forest algorithm consists of
many decision trees, each of which has random
elements of sampling. Because each decision tree
does not use all the training data, as well as the
attributes of the data to build the tree, each tree can
make bad predictions, then each decision tree model

Original dataset

is not overfitting but can be underfitting (the model has
high bias). However, the final result of the Random
Forest algorithm is aggregated from many decision
trees, so the information from the trees will
complement each other, leading to the model having
"low bias" and "low variance", or The model having
good predictive results.

Tree 1l ‘
1

‘ ‘ Tree n ‘

Y = Mean(Yi)

Figure 2. Random Forest model

The general formula of the model is written in the
following form:

F(x) = Zvi (x) (L)

Where F(x) is the predicted value of the output
model, y;(x) is the i" decision tree and M is the total
number of trees.

Because the decision trees are built
independently, the training process can be carried
out in parallel, so the random forest model is one of
the combinatorial models that need the shortest
training time due to the use of computer's
multithreading.

2.2 Data used

In problems using machine learning models, the
training data is considered the most important
parameter. Usage data needs to be collected and
processed to eliminate unusual variables. Existing
studies on the determination of pile load capacity
often suggest including the parameters of the
geometric dimensions of the pile as well as the soil

46

parameters to be included in the calculation.
Meyerhof (1963) [5], Shioi (1982)[6], and Decourt
(1995)[24] propose to use parameters related to the
geometric dimensions of the pile and the average
SPT indexes along the pile body and at the pile tip to
calculate the pile bearing capacity. The soil SPT
index is one of the most popular tests, so soil
properties are characterized through SPT results. In
this study, the average SPT value along the pile body
and pile tip is taken as the main parameter to
determine the bearing capacity of the pile. In addition,
the parameters of the pile shape, size, and thickness
of the soil layers were also collected and statistically
evaluated to evaluate the bearing capacity of the pile.

Therefore, this study proposes the parameters
of geological conditions, size, shape, and size of piles
[25]. Specifically, the data were collected from a
published study [13], in which pile tests were
conducted in a neighborhood to evaluate the effect of
the randomness of soil data on the bearing capacity
of piles. The input parameters include (i) the
Diameter of the pile (Ya); (i) the Thickness of soil
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layer 2 (Y2); (iii) the Thickness of soil layer 4 (Y3); (iv)
the Thickness of soil layer 4(Ya4); (v) pile top elevation
(Ys); (vi) natural ground elevation (Ye); (vii) driving
stop height of guide pile section (Y7); (viii) pile tip
height (Ys); (ix) average SPT value along the pile

It

body length (Yg) and (x) average SPT value at pile tip
(Y10). Diagrams of parameters are shown in Figure 3.
These parameters are random statistics in Table 1.
The bearing capacity of the pile is the output
parameter (Pu).
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Figure 3. Diagram of pile parameters [13]

The dataset is divided into 2 sets of training and
testing data. The number of training samples is 80%
and the test sample is 20% of the total. The training
random statistics must be large enough to ensure the
efficiency and reliability of the model. The training
data consisting of 10 input parameters and 1 output
parameter is normalized to ensure that the variables
have the same influence. To ensure that the input
parameters have the same significance and

determining the pile bearing capacity, the input data
are normalized in the interval [0,1], The normalized
formula for the value of X, is written as follows:

Xmax — Xi
Xmax - Xmin
Where X?orm
X s X

max ?

norm __
X = @

is the normalized value of Xi;

min are the maximum and minimum values

importance for the random forest model in  of the variable X.
Table 1. Inputs and output of the present study
No Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Pu
Unit m m m m m m m m - - MN
1 0.40 4.35 8.00 1.00 2.05 3.48 2.08 15.40 13.35 7.50 1.40
2 0.30 3.40 5.25 0.00 3.40 3.47 3.42 12.05 8.65 6.75 0.56
3 0.30 3.40 5.30 0.00 3.40 3.52 3.42 12.10 8.70 6.76 0.51
4 0.40 4.25 8.00 0.90 2.15 3.56 2.26 15.30 13.15 7.61 1.40
Tap chi KHCN Xay dung - sé 2/2023 47
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5 0.40 3.40 7.30 0.00 3.40 3.49 3.39 14.10 10.70 7.28 1.07
471 0.30 3.40 5.26 0.00 3.40 3.49 3.43 12.06 8.66 6.75 0.51
472 0.40 3.85 7.60 0.00 2.95 3.67 3.27 14.40 11.45 7.15 1.43
Min 0.30 3.40 1.50 0.00 0.68 3.04 1.03 8.30 5.60 4.38 0.41
Max 0.30 3.40 1.50 0.00 0.68 3.04 1.03 8.30 5.60 4.38 1.551

Average 0.36 3.83 6.58 0.33 2.80 3.50 2.92 1354 10.74 7.06 0.98
SD* 0.00 0.35 0.28 0.71 0.64 0.13 0.84 0.71 1.34 0.25 0.02

* Standard deviation

2.3 Performance evaluation

In this study, three statistical criteria, namely the
correlation coefficient (R?), Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE) are used to
evaluate the performance of models [26]. In which,
the correlation between the actual value and the
predicted value is expressed by R?. Conversely, a
higher R? value means better model performance.
The R2? value varies between -« and 1, and the closer
R?is to 1, the more accurate the model is. A value of
R? less than O represents a negative correlation
between the forecast results and the actual results of
the data. RMSE and MAE are used to evaluate the
error between the actual value and the predicted
value. Specifically, the criteria related to the mean
error such as RMSE, and the lower the MAE, the
higher the accuracy of the model and the better the
performance of the model.

The formula to determine R?, RMSE, and MAE is
as follows:

RMSE = % (v,-,) @
Z(yx_/)

=1, @
Z(yY)

MAE = %Zk:\y -i| (5)

Where: k is the number of tuples, yi and )_/i is the
actual data measured and the data predicted by the
model; y is the mean value of y; .

2.4 Reliability analysis

To calculate the reliability of the works, these
include: collecting data about the work, statistical
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analysis, generating random variables, setting up the

confidence function, analyzing the relationship
between the works in the system, reliability of the
works, and the reliability of the system of works [27],
[28].

requirements, the importance level, and the ability to

Depending on the complexity, the calculation

provide observation data and design data about the
building to be able to solve the problem of calculating
the reliability of the work and construction system at
different levels. When considering the geometrical
parameters of the pile and the soil parameters as
random quantities, the value of the bearing capacity
of the piles and the pile group is also a random
quantity. Therefore, this study selects the parameters
related to the geometrical dimensions of the pile and
the characteristic parameters for the ground soil to
use in the simulation problem to determine the
reliability of the pile-bearing capacity.

The iterative calculation is performed on the
analytical model of the pile, based on the statistical
characteristics and the distribution rules of input
parameters using Monte-Carlo simulation [27], [29].
The basic idea behind the Monte Carlo method is to
use random sampling to obtain numerical solutions to
problems that are too difficult or impossible to solve
analytically. The method involves generating a large
number of random samples or simulations of a
system or process and analyzing the results to obtain
estimates of the system's behavior. Therefore, with
each iteration of the Monte-Carlo simulation
progress, random values of the input variables are
generated according to the distribution law and within
the allowed range. Based on the obtained data set,

the statistical characteristics of the results as follows:
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o= B -ta sy o

Where, M — is the number of iterations (number

of input trials); S — is the mathematical expectation of

S; g, —is the standard deviation of S; Si—is the value

of S obtained in the calculation with the i" solution of
the input data.

The reliability of the value of internal force S is
determined by the formula:

Sk =S

P =d( ) ®)

X
Where: ®(X) — In this study, it is assumed that the
pile-bearing capacity follows the normal distribution,
so ®(X) is a normal distribution function; Sw — is the
design value of S.
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3. Results and Discussion
3.1 Input data

Before analysis, input data needs to be analyzed
and processed. The distribution of the data is shown
in Figure 4. The distribution characteristics of the
input parameters include the geometrical dimensions
of the pile, the soil characteristics determined
according to the normal distribution, and the
calculation of the parameters. the number of standard
deviations. It can be seen that the data variables are
distributed in a relatively wide and general range,
while the parameter of pile diameter (Y1) shows that
the amount of pile D400 seems to be larger than that
of pile D300, although So the number of piles in each
group is also large enough to serve the training of the
model. The bearing capacity of piles D300 and D400
can be approximated according to the Gauss
distribution.
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Figure 4. Histogram of all input and output variables

In addition, the correlation of the variables is
shown Table 2. It can be seen that most of the
variables have a small correlation with each other
(below 0.8), showing that the variables have alinearly
independent relationship. Some variables have a
greater correlation (above 0.8) showing that they
have a linear dependent relationship, this study
temporarily does not consider that issue but will
continue to be interested in future studies. The
formula for calculating the correlation coefficient
between variables is written as follows:

>, - Xy - )

(10)

X,y

> -%) Y 0-9)

where: XV are the average values of the two

variables x, y; n - is the number of samples of the
variable x, y;

The correlation coefficient is in the range [0,1],
The closer this coefficient is to zero, it means that the
variables have a linearly self-sufficient relationship
and vice versa is linearly self-sufficient.

Table 2. Correlation matrix of input and output variables

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Pu
Y1 1.00
Y2 0.67 1.00
Y3 0.62 0.45 1.00
Y4 0.55 0.74 0.63 1.00 sym
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Y5 -0.73 -0.96  -0.59 -0.85 1.00
Y6 0.31 0.20 0.31 0.14 -0.20
Y7 -0.63 -0.79 -0.51 -0.91 0.87
Y8 0.63 0.53 0.99 0.74 -0.67
Y9 0.70 0.69 0.95 0.81 -0.81
Y10 0.36 0.23 0.93 0.62 -0.41
Pu 0.84 0.68 0.85 0.61 -0.76

1.00

-0.08 1.00

0.30 -0.61 1.00

030 -0.73 098 1.00

023 -042 093 084 1.00

034 -059 085 0.88 0.66 1.00

3.2 Results model of training

In this study, the Random Forest model is built
and trained based on the Sklearn library in the Python
programming language platform [30]. The model is
put into development against the training dataset and
then retested against the test dataset with default
model hyper-parameters. The results of training and
testing the model are shown in Figure 5 va Table 3.
It can be seen that the predictive capacity of the

(Training set)

model is perfect when the correlation coefficient R? is
above 0.95 for both training and testing datasets. In
addition, the error criteria such as RMSE and MAE
on both data sets are small and the difference is not
much, that the model has high
generalizability and avoids overfitting. This is further
confirmed by the model's error chart on the train and
test sets in Figure 6, where the errors are mostly in
the range[-4%, 6%].

showing

(Testing set)
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15 15
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S 12 2 12
z a
- °
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e 06 ° Pfed'Cted . g ¢  Predicted
. Linear (Predicted) 0.6 Linear (Predicted)
— = = - Linear (Perfect fit) Li Perfect fit
03 I 03 inear (Perfect fit)
0.3 0.6 0.9 1.2 15 1.8 0.3 0.6 0.9 1.2 15 1.8
Measured Pu (MN) Measured Pu (MN)
Figure 5. The regresion chart predicts the bearing capacity of piles
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Figure 6. Histogram of errors on the Training set and Testing set
Table 3. Calculation results of the pile-bearing capacity of the model
Training set Testing set
R? RMSE (MN) MAE (MN) R? RMSE (MN) MAE (MN)
0.967 0.055 0.045 0.950 0.073 0.056
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3.3 Calculation of
capacity

reliability of pile-bearing

As analyzed above, the calculation of pile load
capacity based only on fixed parameters of pile shape,
size, and foundation parameters is not completely
consistent with reality. On the construction site, the
parameters related to the soil thickness are not the
same at all locations, in addition, even within a soil
layer, the SPT value fluctuates within a certain range.
Therefore, when calculating the pile bearing capacity,
random parameters of the ground soil will make the
pile load capacity not completely constant but will
change in a certain range. That would make the design

of piles less secure and although this is partly
addressed through reliability coefficients, detailed
analysis of the probability of safety or danger in a
particular area is also something to consider carefully.
Therefore, in this section, it is proposed to use the
Monte Carlo simulation method to calculate the pile-
bearing capacity, considering the randomness of the
soil data. The soil parameters selected for use in the
simulation are shown in Table 4. A note is that in each
simulation iteration, the values of the input variables
are generated according to the normal distribution to
be included in the calculation of the pile-bearing
capacity.

Table 4. Calculation results of the pile-bearing capacity of the model RF

Input

Standard Deviation

Percentage of (SD/Mean)

parameter Mean value (SD) (%)
Y2 3.83 0.482 13
Y3 6.58 1.638 25
Ys 2.80 0.616 22
Yo 3.50 0.080 2
Y7 2.92 0.599 21
Ys 13.54 1.798 13
Yo 10.74 2.264 21
Y10 7.06 0.660 9

Calculation of pile
bearing capacity using
the RF model

Calculation of
convergence conditions

Figure 7. Cycle diagram of simulation

In this study, because the data set has 2 types of
piles D300, and D400 because each type of pile has
only a different reliability, the simulation needs to be
conducted separately for each type. In this study,
type D400 was selected for simulation. The number
of simulation iterations is determined according to the
convergence condition. When the convergence
criterion function is almost unchanged after a certain
number of simulation iterations, the simulation
problem can be considered to be stable and stop the
iteration. The convergence condition is defined as:
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foe ==—ZGi —1 (11)

Where: G- is the expected value of pile load

capacity; n - is the number of simulations.

The results of the Monte-Carlo simulation to
calculate the pile load capacity are shown in Figure
8. It can be seen that after about 300 iterations, the

simulation converged.
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Figure 8. Statistical convergence analysis
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Figure 9. Histogram of piles bearing capacity from Monte-Carlo simulation

Figure 9 shows the pile design load distribution P_u— P
chart, with the safety factor Fs=2, the analysis shows P= (D{—max} >0.01X 12)
that the mean expected value of the pile-bearing ©
capacity is Pu =0.63(MN) with standard deviation
c=0.069. Therefore, an investigation of some typical

To make sure a reliability level of at least X%, the  reljapility is conducted and the results are shown in

load on the top of the pile should not exceed Pmax,

where Pmax is determined such that: Figure 10.

120
100 A

0 . .
90 95 100 105 110

P rax/PU (%0)

Figure 10. Probability of safe working of piles according to Pmax
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It can be seen that, if Pmax lower than 98.5% of
Pu, the probability of safe working of piles is almost
maximally above 92%, and when the pile top load is
greater than 101.6% of Pu, the remaining stop
reliability is determined to be less than 7.36%. The
probability of safe working threshold of the pile is Pmax
less than 99.2% of Pu, then the safe working
probability of the pile reaches at least 76.5%.

4. Conclusion

The study shows that the machine learning-
based random forest model is a great tool for
predicting pile-bearing capacity. The accuracy of the
model on both the existing training and test data is
excellent, demonstrating that the model is highly
generalizable to the data.

The use of a Random Forest model to calculate
the working reliability of the piles considering the
randomness of the soil data shows that the pile still
has a certain probability of failure, even when the pile
top load does not exceed the mean value of the pile
load capacity. To achieve high pile working reliability
[76.5+100]%, the maximum load to the top of the pile
should be less than 99.2% of the mean pile-bearing
capacity.

The method of calculating the bearing capacity of
piles using the random forest model can be
considered reliable. This model can be used in
calculating the reliability of piles, thereby evaluating
pile performance more objectively when considering
the randomness of the input parameters.
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