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Abstract: Vibration analysis of multi-span bi-
directional functionally graded material (2D-FGM)
beams subjected to a moving load is presented by
using a high-order deformation theory. The material
properties of the beam are assumed to vary
continuously in the thickness and longitudinal
directions by a power-law distribution. The dynamic
response of the beam is computed with the aid of
the Newmark method. The obtained numerical result
reveals that the variation of the material properties
in the thickness and longitudinal directions play an
important role on the dynamic response of the
beam. A parametric study is carried out to highlight
the effect of the material heterogeneity, number of
spans on the dynamic response of the beams. The
influence of the moving speed is also studied and
highlighted.

Keywords: 2D-FGM, a high-order deformation
theory, moving load, finite element method, multi-
span.

Tom tét: Bai bdo phén tich dao dong clia dam da
nhip cé co tinh bién thién hai chiéu (2D-FGM) duwéi
tac dung cda luc di dong, bang ly thuyét ddm béac
cao. Tinh chét vat liéu cda ddm bién thién theo chiéu
dai va chiéu day cua ddm bang quy luat sé md. Bap
tng déng cua dam duoc tinh toan bdng phuwong
phéap tich phan truc tiép Newmark. Cac két qua soé
thu duwroc cho thdy, bién thién cda vét liéu theo hai
chiéu déng vai tro quan trong trong phan tich dao
dong cda ddm. Ngoai ra dnh hwéng cua tham sé vat
liéu, tham sé nhjp dédm, tham sé téc dé cda luc di
ddng ciding dwoc nghién ciru trong bai bao.

T khoa: 2D-FGM, ly thuyét bién dang béc cao,
tai di déng, phuong phéap phén ti hitu han, dam da
nhip.

1. Introduction

The problems of moving loads on an elastic
beam are often meet in the design of bridges,
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railways, highways and many modern machining
operations [1]. A large number of investigations
concerning the dynamic analysis of beams
subjected to moving load have been reported in the
literature; only the main contributions related to the
present work are briefly discussed herein. The early
and excellent reference is the monograph of Fryba
[2], in which several numbers of closed-form
solutions for the moving load problems have been
derived. Based on the analytical and finite element
solutions to a fundamental moving load problem,
Olsson [3] provided an interesting discussion and
the reference data for studies of the moving load
problem. Ichikawa et al. [4] investigated the dynamic
behavior of a multi-span continuous beam subjected
to a constant speed moving mass.

Functionally graded material, initiated by
Japanese scientists in 1984 [5] has received much
attention from engineers and researchers. FGM is
formed by varying the percentage of constituent
materials in certain desired spatial direction. FGM is
being used widely as a structural material, and
analysis of structures made of FGM is presently an
important topic in the field of structural mechanics. A
comprehensive list of publications on analyses of
FGM structures subjected to different loadings is
given in a review paper by Birman and Byrd [6].

There are practical circumstances, in which the
unidirectional FGMs may not be so appropriate to
resist multi-directional variations of thermal and
mechanical loadings. On the other hand, a new type
of functionally graded material (FGM) with material
properties varying in two or three directions is
needed to fulfil the technical requirements such as
the temperature and stress distributions in two or
three directions for aerospace craft and shuttles
where the conventional FGMs (or 1D-FGM) with
material properties which vary in one direction are
not so efficient. Several models for bi-dimensional
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FGM beams and their mechanical behaviour have
been considered recently. In this line of works,
Simsek [7] considered the material properties vary
in both the length and thickness directions, by an
exponential function in vibration study of
Timoshenko beam. Polynomials were assumed for
the displacement field in computing natural
frequencies and the dynamic response of the beam.
Wang et al. [8] presented an analytical method for
free vibration analysis of a 2D-FGM beam. The
material properties are also assumed to vary
exponentially in the beam thickness and length. The
bending of a two-dimensional FGM sandwich (2D-
FGSW) beam was investigated by Karamanli [9]
using a quasi-3D shear deformation theory and the
symmetric smoothed particle  hydro-dynamic
method. Nguyen et al. [10] proposed a 2D-FGM

2. Problem and formulation

A

beam model formed from four different constituent
materials with volume fractions to vary by power-law
functions in both the thickness and longitudinal
directions. Timoshenko beam theory was adopted
by the authors in evaluating the dynamic response
of the beam to a moving load.

In this paper, a finite element procedure for
vibration analysis of multi-span 2D- FGM beams
subjected to a moving point load is proposed. The
material properties of the beams are assumed to
vary continuously in the thickness and longitudinal
direction by a power-law distribution. The discrete
equations of motion of the beams are solved by
using the Newmark method. A parametric study is
carried out to highlight the influence of the material
heterogeneity, number of spans and loading
parameters on the dynamic response of the beam.

AN ANVANVAN

Figure 1. A multi-span 2D-FGM beam traversed by a moving load

Figure 1 shows a multi-span beam with length of
L subjected to a harmonic load, F= const, moving at
a constant speed v from left to right. The beam
cross-section is assumed to be rectangular with
width b and height h. The beam material is assumed

to be a 2D-FGM composed from two constituent
materials, and the effective properties of materials
are graded in the thickness and longitudinal
direction (x, z -direction) according to a power-law
distribution as Karamanli [9]:
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where V. and V., denote the volume fractions
of ceramic and metal material, respectively;
P(x,z) represents the effective material
properties, including Young's modulus, shear
modulus and mass density; the () and (m
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subscripts respectively denote the ceramic and
metal; nz and nx are the grading indexes, which
dictate the variation of the constituent materials
in the thickness and longitudinal directions,
respectively.
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Based on the third-order shear deformation
theory, the axial and transverse displacements at
any point of the beam, u(x,zt) and w(x,z,t),
respectively, are given.

u(x, z,t) = Uy (X, t) + 2(y, — Wy, ) — @z, o

w(X, z,t) = w,(X,1).
where t is the time variable and « = 4/3 h?, ug(X, 1)
and wp(x, t) are, respectively, the axial and

transverse displacements of the point on the x-axis,
Yo is the transverse shear rotation. The axial strain
and shear strain resulted from Eq. (2) are of the
forms.

3
gxx = uO,x + Z(j/o,x _WO,xx)_ (e7/4 70,)(

2
Vxa =}/0—30[Z Yo
Based on the assumption of Hooke’s law, the
constitutive relation for 2D- FG beam is as follows.

3)

O-xx = E(X, Z)'gxx = E(X, Z)[uo,x + Z(yo,x _WO,xx) - O{ZS}/OVX]

TXZ = G(X’ Z)yXZ = 2(1+U)

where E(x,z) and G(x,z) are respectively the
elastic modulus and shear modulus, which are
functions of both the coordinates x, z, oycand z,, are

2

—E(X’ ) [70 - 3052270]

U _ 1]‘ Ailug,x + 2ALZUO,X (7/0,x - WO,xx) + A22 (70,)( _WO,xx)Z - 2A34au0,x7/0,x dX
o| 2PV (7/0,x - Wo,xx) + O‘Z'Abeyg,x + B447/§

(4)

the axial stress and shear stress, respectively. The
strain energy U of the beam resulted from Egs. (3)
and (4) is of the form.

()

where Ajq, A1, Aso, Asg, Ass, Ass and By, are the beam rigidities, defined as:

(A Az Aoy Ay Aus Ass)(%,2) :IE(XxZ)(l, 2,2°,2%, 7", ZG)dA

(6)

B, (X,2) = _[G(x, 2)(1-6az’ +9a’z")dA
A

where E(x,z), G(X,z) are respectively the elastic modulus and shear modulus of the beam. The kinetic energy

(T) of the beam is then given by.

T _EJL‘ |11(U§ +W§)+ 1, (7, _Wo,x)2 +a2|667}§ +21,Uy (74 _Wo,x)_2a|34u070

o (7)
20 _2a|4470(70_wo,x)
In EQs. (7), l11, l12, 122, |34, laa, lgs are the mass moments, defined as
2 5,3 ,4 .6
(s Lios Lo Do s L) (%, 2) = [ p(x,2)(1,2, 2%, 2%, 2%, 2°)A ®
A

where, p(x,z) is the mass density of the beam. The
potential of the moving load is simply given by

Ve =—-Fw(X,t)o(x —vt) 9)
in which F, v are respectively the amplitude, speed
of the moving load and & (.) is the Kronecker delta.

Using the finite element method, the beam is
assumed to be divided into numbers of two-node
beam elements of length I. The vector of nodal
displacements (d) for the element considering the
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transverse shear rotation » as an independent
variable contains eight components as.

i i (10)

T
d = {u, W, W7, U, Wy, W57
where Ui, Wo, Wy, 75, U W, W, 7 are the values
of ug, Wp, Wox and ypat the node i and at the node j,
respectively. In Eq. (10) and hereafter, a superscript
‘T’ is used to denote the transpose of a vector or a

matrix.

u, = N,d; w, =N,.d;

u w

7o = N .d (11)
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with Nu, Nw and Ny denote the matrices of shape
functions for ug, wo and yo respectively. In the
present work, linear shape functions are used for
the axial displacement and the shear rotation, using
the above interpolation schemes, one can write the
strain energy of the beam defined by Egs. (5) as.

1 ne
U= EZdid (12)
where ne is the total number of the elements, and k
is the element stiffness matrix with the following
form.

k =k, +k, +K,, + kg, +k,, + kg +K, (13)
with:
[ [
T T :
kll = JA Nu,xAilNu,de’ k12 = 2.[ Nu,xAIZ(Ny,x - Nw,xx)dx’
0 0
[ [
T . T .
k22 = J.(N;/,x - Nw,xx) AZZ(N}/,X - Nw,xx)dx’ k34 = —2(1.[ Nu,xA34N;/,de’
0 0
| | (14)
T . 2 T .
k44 = —ZOZI Ny,xA44(Ny,x - Nw,xx)dX’ k66 =a J. Ny,xABBNy,de’
0 0
[
T
K, = [ N]B,N, dx
0
Similarly, the kinetic energy in Eq. (7) can be rewritten as.
T
1&(ad od
T=2>—|m— (15)
2 ot ot
where:
m = m, +m, +m,, +Mm,, +m,, + Mg (16)
is the element consistent mass matrix, in which:
[ [
T T . T .
my, = [(NJ+ N3 )l (N, + N, )lx; my, =2[ N1, (N, =N, )dx;
0 0
[ . I
. T .
My, = [(N, =Ny, ) 1o (N, =N, Jdx; My, =—2a[NJI,N dx; (17)
0 0
| |
T . 2 T .
My, =20 [N, 1, (N, =N, Jdx;  mg=a[N] 1N dx;
0 0
Are the element mass matrices stemming from Where D, M, and K are the structural nodal
axial, transverse translations, axial translation—  displacement vector, mass and stiffness matrices,
sectional rotation coupling, and cross-sectional  gptained by assembling the element displacement

rotation, respectively. Finally, the potential of the
external moving load can be written in the form.

Vg =—FNJ,8(x - Vt) (18)
Having the element stiffness and mass matrices
derived, the equations of motion for the free
vibration analysis in the context of finite element
analysis can be written in the form.

o°D

M ? +KD =F* (29)
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vector d, mass matrix m, and stiffness matrix k over
the total elements, respectively; F* is the vector of
the nodal external forces.

3. Numerical results and discussion

Using the derived finite element formulation, the
dynamic response of multi-span 2D-FG beams is
computed in this section. It is assumed that the
beam is formed from spans of the same length.
Otherwise stated, the beam is assumed to be
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composed of Steel and Alumina. The Young’s
modulus, mass density and Poisson’s ratio of Steel
are respectively 210 GPa, 7800 kg/m3, 0.3177, and
that of Alumina are 390 MPa, 3960 kg/m3 and 0.3,
respectively. The beam with L=20 m, h=1m and
b=0.5 m used by Simsek and his co-worker [12,13]
is chosen in the computations reported below.

3.1 Formulation validation

Validation of the derived formulation is
necessary to confirm the accuracy before computing
the dynamic response of the beam. Firstly, the
natural frequencies of a multi-span homogeneous
beam are computed, and the obtained numerical
results are listed in Table 1, where the
corresponding results obtained by Ichikawa et al [4]
are also given. The dimensionless natural frequency
parameter, u;, in Table 1 is defined as.

Table 1. Comparison of first five natural frequencies

PoA

2 2
Hi = ol E,|

(20)

Where w; are the natural frequencies; L is the
length of a span; E,, po are Young’s modulus and
density of the

mass beam,

respectively. It should be noted that since the

homogeneous

Bernoulli beam theory is used in Ichikawa et al [4],

and in order to enable the numerical results
comparable, the frequencies in Table 1 have been
computed with an aspect ratio Ls/h=100, which is
large enough to omit the effect of the shear
deformation. As seen from the Table 1, a good
agreement between the frequencies computed in
the present work with that of Ichikawa et al [4] is

noted.

of multi-span homogeneous beams (nx=0, nz=0)

Number of

spans p1 U2 U3 L s

1 Present 3.1414 6.2817 9.4202 12.5567 15.6921
Ichikawa [4] T 2n 3n 4n 51

2 Present 3.1414 3.9261 6.2817 7.0661 9.4202
Ichikawa [4] T 3.9266 2n 7.0686 3n

3 Present 3.1414 3.5560 4.2968 6.2817 6.7056

Ichikawa [4] T 3.5564 4.2975 2n 6.7076

4 Present 3.1414 3.3929 3.9261 4.4625 6.2817
Ichikawa [4] b 3.3932 3.9266 4.4633 2n

Secondly, the fundamental frequency of a one-
span FGM beam composed of Aluminum (Al) and
Alumina (Al,O3), previously studied in Sina et al [11]
and Simsek [12], is computed. The Young’s
modulus, mass density and Poisson’s ratio of
Alumina are 70 GPa, 2707 kg/m3 and 0.23,
respectively [12]. The computed fundamental
frequency parameters of the present work are listed
in Table 2 for various values of the aspect ratio, L/h.
The corresponding values obtained by using an
analytical method by Sina et al [11] and a numerical
method by Simsek [12] are also given in the table.
The non-dimensional fundamental frequencies, y, in
Table 2 have been defined according to Sina et al
[11] as.

Ill
— (21)

p=ol |—
h*[E(z)dz
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Where w is the fundamental frequency of the
FG beam. As seen from the Table 2, the
fundamental frequencies computed in the present
work are in good agreement with that of Sina et al
[11] and Simsek [12], regardless of the aspect
ratios.

Thirdly, the maximum dynamic deflection factor
at the mid-span and the corresponding speed of
one-span FGM beam composed of Steel and
Alumina with L =20 m, h =09 m and b = 0.4 m,
previously studied by Simsek and Kocatirk [13], are
computed. The obtained results are listed in Table
3. In the table, the dynamic deflection factor fp is
defined as fp = max(w(L/2, t)/wp) with wj is the static
deflection of the steel beam under static load F
acting at the mid-span. A very good agreement
between the numerical results of the present work
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with that of $Simsek and Kocaturk [13] is seen from

the table.

Table 2. Comparison of non-dimensional fundamental frequency of one-span FGM beam(nx=0)

n L/h=10 L/h=30 L/h=100
0.3 Present 2.7017 2.7382 2.7425
0.3 Sina et al [11] 2.695 2.737 2.742
0.3 Simsek [12] 2.701 2.738 2.742

Table 3. Maximum deflection factor and corresponding speed of one-span FGM beam under a moving load (nx=0)

n fo- [13] fo-Present v(m/s)-[13] v(m/s)- present
0.2 1.0344 1.0377 222 222
0.5 1.1444 1.1476 198 197
1 1.2503 1.2537 179 178
2 1.3376 1.3416 164 163
Pure Alumina 0.9328 0.9379 252 251
Pure Steel 1.7324 1.7418 132 131

The numerical results listed in Tables 1-3 have
been computed by using 14 elements for each span.
More than 14 elements have been employed, but no
improvement in the numerical results have been
seen, and in this regard, 14 elements are used to
discrete each span in the computations reported
below.

3.2 Dynamic deflection

The normalized deflection at the midpoint of the
first and second spans of a four-span 2D-FGM
beam are shown in Fig. 2 for various values of the
index nx, nz, speed parameter f,. In the figures,
w(Ls/2, t) denotes the dynamic deflection at the

32

midpoint of the i span, and Wy = FLgi 1 48E | is

the static deflection of a simply supported beam with
length of Lg under a static load F at the midpoint.
The speed parameter f, is defined in accordance

with Ichikawa et al [4], f, =VL\/pnAlEyl | and

thus for the given data of the beam and for f, = 1.2,
the equivalent speed of the moving load is 90 m/s
for the beam with a span length of 20 m. As seen
from the figures, the material heterogeneity which
governed by the index nx, nz clearly affects the
dynamic deflection of the beam. The maximum
normalized deflection of the beam associated with a
higher index nx, nz is higher than that of the beam
with lower index nx, nz.
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nx=0.5, fv =1.2

—nz=0.2

x/L
Figure 2. Normalized deflection at midpoint of the first span (four-span beam)
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Figure 3. Normalized deflection at the midpoint of the first and second spans for 2D-FG beam with different numbers of
spans (nx=1, nz=1)

The normalized dynamic deflections at the first
and second spans of the 2D-FGM beam with
different numbers of spans computed with various
values of the speed parameters are shown in Fig. 3

for nx=1, nz=1 and f,=1.2. As seen from the figure,
the maximum deflection at the midpoint of the first
and the second spans of the beam slightly reduces
for the beam with more spans.
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Figure 4. Maximum normalized deflection at the midpoint of the first span (four-span beam)
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In Fig. 4, the relation between the moving speed
v and the maximum dynamic deflection at the
midpoint of the first span is shown for various values
of the index nx, nz. The effect of the material
heterogeneity and the moving speed is clearly seen
from the figure, and the maximum dynamic
deflection is higher for the beam associated with a
higher index nx, nz, regardless of the moving speed.

4. Conclusion

In this paper, a finite element procedure for
vibration analysis of multi-span 2D-FGM beams
subjected to a moving point load has been
presented. The dynamic responses of the beam
have been computed with the aid of the Newmark
method. The obtained numerical results have shown
that the formulated element is capable to give
accurate dynamic characteristics of the beams. A
parametric study has been carried out to highlight
the influence of material heterogeneity, the number
of spans and the loading parameters on the
dynamic response of the beam. It has been shown
that the beam associated with lower index nx, nz
endures a smaller dynamic deflection than that of
the beam with higher index nx, nz.

REFERENCES

1. W.H. Lin and M.W. Trethewey (1990), Finite element
analysis of elastic beams subjected to moving
dynamic loads. J. Sound and Vibration, 2, 323-342.
https://doi.org/10.1016/0022-460X(90)90860-3.

2. L. Fryba (1972), Vibration of solids and structures
under moving loads, Academia, Prague Garvan, The
Maple book, Chapman & Hall/CRC, Florida.

3. M. Olsson (1991), On the fundamental moving load
problem, J. Sound and Vibration, 2, 299-307.
https://doi.org/10.1016/0022-460X(91)90593-9.

4. M. Ichikawa, Y. Miyakawa and A. Matsuda (2000),
Vibration analysis of the continuous beam subjected to
a moving mass, J. Sound and Vibration, 3, 611-628.
https://doi.org/10.1006/jsvi.1999.2625.

5. M. Koizumi (1997), FGM activities in Japan, Composites:

34

pat B, 1-2, 1-4. https:/doi.org/10.1016/S1359-

8368(96)00016-9.

6. V. Birman, and LW. Byrd (2007), Modeling and
functionally graded materials and
5, 195-216.

analysis of
structures. Applied Mechanics Reviews,
https://doi.org/10.1115/1.2777164.

7. M. Simsek (2015). Bi-directional functionally graded
materials (BDFGMs) for free and forced vibration of
Timoshenko beams with various boundary conditions.
Composite Structures, 133, 968-978.
http://dx.doi.org/10.1016/j.compstruct.08.021.

8. Z.-H. Wang, X.-H. Wang, G.-D. Xu, S. Cheng, and T.
Zeng (2015). Free vibration of twodirectional functionally
graded beams. Composite Structures, 135(2016), 191-
198. https://doi.org/10.1016/j.compstruct.09.013.

9. A. Karamanli (2017). Bending behaviour of two directional
functionally graded sandwich beams by using a quasi-3D
shear deformation theory. Composite Structures, 174, 70-
86. https://doi.org/10.1016/j.compstruct.2017.04.046.

10.D. K. Nguyen, Q. H. Nguyen, T. T. Tran, and V. T. Bui
(2017). Vibration of bi-dimensional functionally graded
Timoshenko beams excited by a moving load. Acta
Mechanica, 1, 141-155. DOI 10.1007/s00707-016-
1705-3.

11. S.A. Sina, H.M. Navazi, and H. Haddadpour (2009),
An analytical method for free vibration analysis of
functionally graded beams, Materials & Design, 3, 741-
747. https://doi.org/10.1016/j.matdes.2008.05.015.

12. M. Simsek (2009), Vibration analysis of a functionally
graded beam under a moving mass by using different
beam theories, Composite Structures, 4 (2010), 904-
917. https://doi.org/10.1016/j.compstruct.09.030.

13. M. Simsek, and T. Kocaturk (2009), Free and forced vibration
of a functionally graded beam subjected to a concentrated
moving harmonic load, Composite Structures, 4 (2009), 465-
473. https://doi.org/10.1016/.compstruct.04.024.

Ngay nhén bai: 20/5/2021.
Ngay nhén bai stra: 30/6/2021.

Ngay chép nhén dang: 30/6/2021.

Tap chi KHCN Xay dung - s 2/2021


https://doi.org/10.1016/0022-460X(90)90860-3
https://doi.org/10.1016/0022-460X(91)90593-9
https://doi.org/10.1006/jsvi.1999.2625
https://doi.org/10.1016/S1359-8368(96)00016-9
https://doi.org/10.1016/S1359-8368(96)00016-9
https://doi.org/10.1115/1.2777164
http://dx.doi.org/10.1016/j.compstruct.08.021
https://doi.org/10.1016/j.compstruct.09.013
https://doi.org/10.1016/j.compstruct.2017.04.046
https://doi.org/10.1016/j.matdes.2008.05.015
https://doi.org/10.1016/j.compstruct.09.030
https://doi.org/10.1016/j.compstruct.04.024

