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 Abstract: Vibration analysis of multi-span bi-

directional functionally graded material (2D-FGM) 

beams subjected to a moving load is presented by 

using a high-order deformation theory. The material 

properties of the beam are assumed to vary 

continuously in the thickness and longitudinal 

directions by a power-law distribution. The dynamic 

response of the beam is computed with the aid of 

the Newmark method. The obtained numerical result 

reveals that the variation of the material properties 

in the thickness and longitudinal directions play an 

important role on the dynamic response of the 

beam. A parametric study is carried out to highlight 

the effect of the material heterogeneity, number of 

spans on the dynamic response of the beams. The 

influence of the moving speed is also studied and 

highlighted.  

Keywords: 2D-FGM, a high-order deformation 

theory, moving load, finite element method, multi-

span. 

 Tóm tắt: Bài báo phân tích dao động của dầm đa 

nhịp có cơ tính biến thiên hai chiều (2D-FGM) dưới 

tác dụng của lực di động, bằng lý thuyết dầm bậc 

cao. Tính chất vật liệu của dầm biến thiên theo chiều 

dài và chiều dày của dầm bằng quy luật số mũ. Đáp 

ứng động của dầm được tính toán bằng phương 

pháp tích phân trực tiếp Newmark. Các kết quả số 

thu được cho thấy, biến thiên của vật liệu theo hai 

chiều đóng vai trò quan trọng trong phân tích dao 

động của dầm. Ngoài ra ảnh hưởng của tham số vật 

liệu, tham số nhịp dầm, tham số tốc độ của lực di 

động cũng được nghiên cứu trong bài báo. 

Từ khóa: 2D-FGM, lý thuyết biến dạng bậc cao, 

tải di động, phương pháp phần tử hữu hạn, dầm đa 

nhịp. 

1. Introduction  

The problems of moving loads on an elastic 

beam are often meet in the design of bridges, 

railways, highways and many modern machining 

operations [1]. A large number of investigations 

concerning the dynamic analysis of beams 

subjected to moving load have been reported in the 

literature; only the main contributions related to the 

present work are briefly discussed herein. The early 

and excellent reference is the monograph of Frýba 

[2], in which several numbers of closed-form 

solutions for the moving load problems have been 

derived. Based on the analytical and finite element 

solutions to a fundamental moving load problem, 

Olsson [3] provided an interesting discussion and 

the reference data for studies of the moving load 

problem. Ichikawa et al. [4] investigated the dynamic 

behavior of a multi-span continuous beam subjected 

to a constant speed moving mass. 

Functionally graded material, initiated by 

Japanese scientists in 1984 [5] has received much 

attention from engineers and researchers. FGM is 

formed by varying the percentage of constituent 

materials in certain desired spatial direction. FGM is 

being used widely as a structural material, and 

analysis of structures made of FGM is presently an 

important topic in the field of structural mechanics. A 

comprehensive list of publications on analyses of 

FGM structures subjected to different loadings is 

given in a review paper by Birman and Byrd [6]. 

There are practical circumstances, in which the 

unidirectional FGMs may not be so appropriate to 

resist multi-directional variations of thermal and 

mechanical loadings. On the other hand, a new type 

of functionally graded material (FGM) with material 

properties varying in two or three directions is 

needed to fulfil the technical requirements such as 

the temperature and stress distributions in two or 

three directions for aerospace craft and shuttles 

where the conventional FGMs (or 1D-FGM) with 

material properties which vary in one direction are 

not so efficient. Several models for bi-dimensional 
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FGM beams and their mechanical behaviour have 

been considered recently. In this line of works, 

Simsek [7] considered the material properties vary 

in both the length and thickness directions, by an 

exponential function in vibration study of 

Timoshenko beam. Polynomials were assumed for 

the displacement field in computing natural 

frequencies and the dynamic response of the beam. 

Wang et al. [8] presented an analytical method for 

free vibration analysis of a 2D-FGM beam. The 

material properties are also assumed to vary 

exponentially in the beam thickness and length. The 

bending of a two-dimensional FGM sandwich (2D-

FGSW) beam was investigated by Karamanli [9] 

using a quasi-3D shear deformation theory and the 

symmetric smoothed particle hydro-dynamic 

method. Nguyen et al. [10] proposed a 2D-FGM 

beam model formed from four different constituent 

materials with volume fractions to vary by power-law 

functions in both the thickness and longitudinal 

directions. Timoshenko beam theory was adopted 

by the authors in evaluating the dynamic response 

of the beam to a moving load.  

In this paper, a finite element procedure for 

vibration analysis of multi-span 2D- FGM beams 

subjected to a moving point load is proposed. The 

material properties of the beams are assumed to 

vary continuously in the thickness and longitudinal 

direction by a power-law distribution. The discrete 

equations of motion of the beams are solved by 

using the Newmark method. A parametric study is 

carried out to highlight the influence of the material 

heterogeneity, number of spans and loading 

parameters on the dynamic response of the beam.  
 

2. Problem and formulation

 
 
 
 
 
 
 
 
 
 
 

Figure 1. A multi-span 2D-FGM beam traversed by a moving load 

 

Figure 1 shows a multi-span beam with length of 

L subjected to a harmonic load, F= const, moving at 

a constant speed v from left to right. The beam 

cross-section is assumed to be rectangular with 

width b and height h. The beam material is assumed 

to be a 2D-FGM composed from two constituent 

materials, and the effective properties of materials 

are graded in the thickness and longitudinal 

direction (x, z -direction) according to a power-law 

distribution as Karamanli [9]:
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where Vc and Vm denote the volume fractions 

of ceramic and metal material, respectively; 

P(x,z) represents the effective material 

properties, including Young's modulus, shear 

modulus and mass density; the ()c and ()m 

subscripts respectively denote the ceramic and 

metal; nz and nx are the grading indexes, which 

dictate the variation of the constituent materials 

in the thickness and longitudinal directions, 

respectively. 
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Based on the third-order shear deformation 

theory, the axial and transverse displacements at 

any point of the beam, u(x,z,t) and w(x,z,t), 

respectively, are given.  

3

0 0 0, 0

0

( , , ) ( , ) ( )

( , , ) ( , ).

xu x z t u x t z w z

w x z t w x t

     


      (2) 

where t is the time variable and  = 4/3 h
2
, u0(x, t) 

and w0(x, t) are, respectively, the axial and 

transverse displacements of the point on the x-axis, 

γ0 is the transverse shear rotation. The axial strain 

and shear strain resulted from Eq. (2) are of the 

forms. 
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Based on the assumption of Hooke’s law, the 

constitutive relation for 2D- FG beam is as follows.
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where E(x,z) and G(x,z) are respectively the 

elastic modulus and shear modulus, which are 

functions of both the coordinates x, z, xx and xz are 

the axial stress and shear stress, respectively. The 

strain energy U of the beam resulted from Eqs. (3) 

and (4) is of the form.
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where A11, A12, A22, A34, A44, A66  and B44 are the beam rigidities, defined as: 
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where E(x,z), G(x,z) are respectively the elastic modulus and shear modulus of the beam. The kinetic energy 

(T) of the beam is then given by. 
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In Eqs. (7), I11, I12, I22, I34, I44, I66   are the mass moments, defined as 
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A
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where, ρ(x,z) is the mass density of the beam. The 

potential of the moving load is simply given by 

          ( , ) ( )FV Fw x t x vt                           (9) 

in which F, v are respectively the amplitude, speed 

of the moving load and   δ (.) is the Kronecker delta. 

Using the finite element method, the beam is 

assumed to be divided into numbers of two-node 

beam elements of length l. The vector of nodal 

displacements (d) for the element considering the 

transverse shear rotation 0 as an independent 

variable contains eight components as. 

 , ,, , , , , , ,
T

i i i x i j j j x ju w w u w w d                   (10) 

where , ,, , , , , , ,i i i x i j j j x ju w w u w w  are the values 

of u0, w0, w0,x and γ0 at the node i and at the node j, 

respectively. In Eq. (10) and hereafter, a superscript 

‘T’ is used to denote the transpose of a vector or a 

matrix. 

0 0 w 0u   N . ; w    N . ;    N .  u   d d d  (11) 
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with Nu, Nw and Nγ denote the matrices of shape 

functions for u0, w0 and γ0, respectively. In the 

present work, linear shape functions are used for 

the axial displacement and the shear rotation, using 

the above interpolation schemes, one can write the 

strain energy of the beam defined by Eqs. (5) as.   

                            
1

2

ne
TU  d kd                 (12) 

where ne is the total number of the elements, and k 

is the element stiffness matrix with the following 

form.
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Similarly, the kinetic energy in Eq. (7) can be rewritten as.  
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where: 
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is the element consistent mass matrix, in which:  
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Are the element mass matrices stemming from 

axial, transverse translations, axial translation–

sectional rotation coupling, and cross-sectional 

rotation, respectively. Finally, the potential of the 

external moving load can be written in the form.  

        ( )T
F wV FN x vt                                  (18) 

Having the element stiffness and mass matrices 

derived, the equations of motion for the free 

vibration analysis in the context of finite element 

analysis can be written in the form. 

           
2

2

ex

t


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

D
M KD F                               (19) 

Where D, M, and K are the structural nodal 

displacement vector, mass and stiffness matrices, 

obtained by assembling the element displacement 

vector d, mass matrix m, and stiffness matrix k over 

the total elements, respectively; F
ex

 is the vector of 

the nodal external forces. 

3. Numerical results and discussion 

Using the derived finite element formulation, the 

dynamic response of multi-span 2D-FG beams is 

computed in this section. It is assumed that the 

beam is formed from spans of the same length. 

Otherwise stated, the beam is assumed to be 
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composed of Steel and Alumina. The Young’s 

modulus, mass density and Poisson’s ratio of Steel 

are respectively 210 GPa, 7800 kg/m3, 0.3177, and 

that of Alumina are 390 MPa, 3960 kg/m3 and 0.3, 

respectively. The beam with L=20 m, h=1m and 

b=0.5 m used by Şimşek and his co-worker [12,13] 

is chosen in the computations reported below. 

3.1 Formulation validation 

Validation of the derived formulation is 

necessary to confirm the accuracy before computing 

the dynamic response of the beam. Firstly, the 

natural frequencies of a multi-span homogeneous 

beam are computed, and the obtained numerical 

results are listed in Table 1, where the 

corresponding results obtained by Ichikawa et al [4] 

are also given. The dimensionless natural frequency 

parameter, μi, in Table 1 is defined as. 

2 2 0

0
i i s

A
L

E I


                                       (20) 

Where ωi are the natural frequencies; Ls is the 

length of a span; E0, ρ0 are Young’s modulus and 

mass density of the homogeneous beam, 

respectively. It should be noted that since the 

Bernoulli beam theory is used in Ichikawa et al [4], 

and in order to enable the numerical results 

comparable, the frequencies in Table 1 have been 

computed with an aspect ratio Ls/h=100, which is 

large enough to omit the effect of the shear 

deformation. As seen from the Table 1, a good 

agreement between the frequencies computed in 

the present work with that of Ichikawa et al [4] is 

noted.

 
Table 1. Comparison of first five natural frequencies of multi-span homogeneous beams (nx=0, nz=0) 

Number of 
spans 

 1 2 3 4 5 

1 
Present 

Ichikawa [4] 

3.1414 

 

6.2817 

2 

9.4202 

3 

12.5567 

4 

15.6921 

5 

2 
Present 

Ichikawa [4] 

3.1414 

 

3.9261 
3.9266 

6.2817 

2 

7.0661 
7.0686 

9.4202 

3 

3 
Present 

Ichikawa [4] 

3.1414 

 

3.5560 
3.5564 

4.2968 
4.2975 

6.2817 

2 

6.7056 
6.7076 

4 
Present 

Ichikawa [4] 

3.1414 

 

3.3929 
3.3932 

3.9261 
3.9266 

4.4625 
4.4633 

6.2817 

2 

 

 Secondly, the fundamental frequency of a one-

span FGM beam composed of Aluminum (Al) and 

Alumina (Al2O3), previously studied in Sina et al [11] 

and Şimşek [12], is computed. The Young’s 

modulus, mass density and Poisson’s ratio of 

Alumina are 70 GPa, 2707 kg/m3 and 0.23, 

respectively [12]. The computed fundamental 

frequency parameters of the present work are listed 

in Table 2 for various values of the aspect ratio, L/h. 

The corresponding values obtained by using an 

analytical method by Sina et al [11] and a numerical 

method by Şimşek [12] are also given in the table. 

The non-dimensional fundamental frequencies, μ, in 

Table 2 have been defined according to Sina et al 

[11] as. 

2 11

2

0

( )
L

I
L

h E z dz
 


                                 (21) 

Where ω is the fundamental frequency of the 

FG beam. As seen from the Table 2, the 

fundamental frequencies computed in the present 

work are in good agreement with that of Sina et al 

[11] and Şimşek [12], regardless of the aspect 

ratios. 

Thirdly, the maximum dynamic deflection factor 

at the mid-span and the corresponding speed of 

one-span FGM beam composed of Steel and 

Alumina with L = 20 m, h = 0.9 m and b = 0.4 m, 

previously studied by Şimşek and Kocatürk [13], are 

computed. The obtained results are listed in Table 

3. In the table, the dynamic deflection factor fD is 

defined as fD = max(w(L/2, t)/w0) with w0 is the static 

deflection of the steel beam under static load F 

acting at the mid-span. A very good agreement 

between the numerical results of the present work 
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with that of Şimşek and Kocatürk [13] is seen from the table.

 
Table 2. Comparison of non-dimensional fundamental frequency of one-span FGM beam(nx=0) 

n  L/h=10 L/h=30 L/h=100 

0.3 Present 2.7017 2.7382 2.7425 

0.3 Sina et al [11] 2.695 2.737 2.742 

0.3 Şimşek [12] 2.701 2.738 2.742 

 
Table 3. Maximum deflection factor and corresponding speed of one-span FGM beam under a moving load (nx=0) 

n fD- [13] fD-Present v(m/s)-[13] v(m/s)- present 

0.2 1.0344 1.0377 222 222 

0.5 1.1444 1.1476 198 197 

1 1.2503 1.2537 179 178 

2 1.3376 1.3416 164 163 

Pure Alumina 0.9328 0.9379 252 251 

Pure Steel 1.7324 1.7418 132 131 

 

The numerical results listed in Tables 1-3 have 

been computed by using 14 elements for each span. 

More than 14 elements have been employed, but no 

improvement in the numerical results have been 

seen, and in this regard, 14 elements are used to 

discrete each span in the computations reported 

below. 

3.2 Dynamic deflection 

The normalized deflection at the midpoint of the 
first and second spans of a four-span 2D-FGM 
beam are shown in Fig. 2 for various values of the 
index nx, nz, speed parameter fv. In the figures, 
w(Ls/2, t) denotes the dynamic deflection at the 

midpoint of the i
th

 span, and 
3

0 / 48si mw FL E I  is 

the static deflection of a simply supported beam with 
length of Ls under a static load F at the midpoint. 
The speed parameter fv is defined in accordance 

with Ichikawa et al [4], /v s m mf vL A E I , and 

thus for the given data of the beam and for  fv = 1.2, 
the equivalent speed of the moving load is 90 m/s 
for the beam with a span length of 20 m. As seen 
from the figures, the material heterogeneity which 
governed by the index nx, nz clearly affects the 
dynamic deflection of the beam. The maximum 
normalized deflection of the beam associated with a 
higher index nx, nz is higher than that of the beam 
with lower index nx, nz.
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Figure 2. Normalized deflection at midpoint of the first span (four-span beam) 

 
Figure 3. Normalized deflection at the midpoint of the first and second spans for 2D-FG beam with different numbers of 

spans (nx=1, nz=1) 
 

The normalized dynamic deflections at the first 

and second spans of the 2D-FGM beam with 

different numbers of spans computed with various 

values of the speed parameters are shown in Fig. 3 

for nx=1, nz=1 and fv=1.2. As seen from the figure, 

the maximum deflection at the midpoint of the first 

and the second spans of the beam slightly reduces 

for the beam with more spans.
 

 
Figure 4. Maximum normalized deflection at the midpoint of the first span (four-span beam) 
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In Fig. 4, the relation between the moving speed 

v and the maximum dynamic deflection at the 

midpoint of the first span is shown for various values 

of the index nx, nz. The effect of the material 

heterogeneity and the moving speed is clearly seen 

from the figure, and the maximum dynamic 

deflection is higher for the beam associated with a 

higher index nx, nz, regardless of the moving speed.  

4. Conclusion 

In this paper, a finite element procedure for 

vibration analysis of multi-span 2D-FGM beams 

subjected to a moving point load has been 

presented. The dynamic responses of the beam 

have been computed with the aid of the Newmark 

method. The obtained numerical results have shown 

that the formulated element is capable to give 

accurate dynamic characteristics of the beams. A 

parametric study has been carried out to highlight 

the influence of material heterogeneity, the number 

of spans and the loading parameters on the 

dynamic response of the beam. It has been shown 

that the beam associated with lower index nx, nz 

endures a smaller dynamic deflection than that of 

the beam with higher index nx, nz.  
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