Ngày xuất bản: 30-11-2021
Số tạp chí: Số 3-2021

TS. Vũ Văn Tuấn
 

Từ khóa:

Dự đoán
mạng nơ ron nhân tạo (ANN)
lún mặt đất
xây dựng đường

Tóm tắt:

Mạng nơ-ron nhân tạo (artificial neural network - ANN) đã được áp dụng trong các vấn đề dự báo độ lún. Tuy nhiên chưa có nhiều nghiên cứu về dự báo độ lún theo thời gian. Trong bài báo này một mô hình mạng nơ-ron nhân tạo sẽ được phát triển để dự báo độ lún của hai công trình xây dựng đường khác nhau. Kết quả dự báo sẽ được so sánh với hai phương pháp truyền thống (phương pháp Asaoka và phương pháp Asaoka kết hợp đa thức). Độ chính xác của mô hình sẽ được đánh giá qua hai chỉ số: Hệ số tương quan bội (R2) và sai số toàn phương trung bình (MSE). So sánh kết quả dự đoán của các mô hình với kết quả thực tế có thể thấy: nên sử dụng mạng nơ-ron nhân tạo (ANN) để dự báo lún theo thời gian trong quá trình thi công đường.

Nội dung:

Tài liệu tham khảo:

1.  Caudill Maureen (1988). "Neural networks primer, Part III". AI Expert, 3 (6), pp 53-59.

2. Goh ATC and Kulhawy FH (2003). "Neural network approach to model the limit state surface for reliability analysis". Can Geotech Jounal, 40 (6), pp 1235-1244.

3. Hornik Kurt, Stinchcombe Maxwell, and White Halbert (1989). "Multilayer feedforward networks are universal approximators". Neural networks, 2 (5), pp 359-366.

4.  Kim Y and Kim B (2008). "Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model".Comput Geotech, 35 (3), pp 313-322.

5. Maier HR and Dandy GC (2000), Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges, in Artificial neural networks in hydrology. Springer. p. 287-309.

6. Rumelhart David E, Hinton Geoffrey E, and Williams Ronald J (1985), Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science.

7.  Shahin Mohamed A (2010). "Intelligent computing for modeling axial capacity of pile foundations". Canadian Geotechnical Journal, 47 (2), pp 230-243.

8. Shahin Mohamed A, Jaksa Mark B, and Maier Holger R (2002). "Artificial neural network based settlement prediction formula for shallow foundations on granular soils". Australian Geomechanics: Journal and News of the Australian Geomechanics Society, 37 (4), pp 45.

9. Tran Quang Hoc, Nguyen Thanh Le, and Tong Thi Hanh (2017). "Study and establish subsidence forecast models in accordance with analysis and forecast soft ground subsidence from monitoring results". Journal of Mining and Earth Sciences, 58 / 2017 pp 93-100.

10. Alkroosh I. and Nikraz H. (2011). "Simulating pile load-settlement behavior from CPT data using intelligent computing". Central European Journal of Engineering, 1 (3), pp 295-305.

11.  Baziar Mohammad Hassan, Azizkandi Alireza Saeedi, and Kashkooli Armin (2015). "Prediction of pile settlement based on cone penetration test results: an ANN approach". KSCE Journal of Civil Engineering, 19 (1), pp 98-106.

12.  Hajihassani M, et al. (2019). "3D prediction of tunneling-induced ground movements based on a hybrid ANN and empirical methods". Engineering with Computers, pp 1-19.

13.  Ismail Abdussamad and Jeng Dong-Sheng (2011). "Modelling load–settlement behaviour of piles using high-order neural network (HON-PILE model)". Engineering Applications of Artificial Intelligence, 24 (5), pp 813-821.

14. Kung GT, et al. (2007). "A neural network approach to estimating deflection of diaphram walls caused by excavation in clays". Comput Geotech, 34 (5), pp 385-396.

15.  Kuo YL, et al. (2009). "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil". Computers and Geotechnics, 36 (3), pp 503-516.

16.  Masters Timothy (1993), Practical neural network recipes in C++. Morgan Kaufmann.

17. Murphy Kevin P (2012), Machine learning: a probabilistic perspective. MIT press.

18. Nejad F Pooya, et al. (2009). "Prediction of pile settlement using artificial neural networks based on standard penetration test data". Computers and geotechnics, 36 (7), pp 1125-1133.

19. Rahul, et al. (2015). "Evaluation of dump slope stability of a coal mine using artificial neural network". Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 1 (3), pp 69-77.

20. Shahin MA, Jaksa MB, and Maier HR (2005). "Neural network based stochastic design charts for settlement prediction". Canadian Geotechnical Journal, 42 (1), pp 110-120.

21. Shahin Mohamed A, Jaksa Mark B, and Maier Holger R (2009). "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications". Advances in Artificial Neural Systems, pp 5.

22. Suwansawat Suchatvee and Einstein Herbert H (2006). "Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling". Tunnelling and underground space technology, 21 (2), pp 133-150.

23.  Verma A. K. and Sirvaiya Abhinav (2016). "Comparative analysis of intelligent models for prediction of Langmuir constants for CO2 adsorption of Gondwana coals in India". Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2 (2), pp 97-109.

Bài viết liên quan: