Ngày xuất bản: 05-09-2022
Số tạp chí: Số 2-2021

ThS. Ngô Quang Hưng

Từ khóa:

Tóm tắt:

Bài báo đề xuất việc tính toán giới hạn và thích nghi của tấm Kirchhoff dưới các điều kiện ngẫu nhiên của giới hạn chảy. Thiết kế theo độ tin cậy của kết cấu bằng kỹ thuật Chance constrained programming là rất hiệu quả nếu nó được xây dựng như một bài toán tối ưu tất định tương đương.

Nội dung:

Tài liệu tham khảo:

1. N.T. Trần, T.N. Trần, H.G. Matthies, G.E. Stavroulakis, M. Staat (2016), Shakedown analysis of plate bending analysis under stochastic uncertainty by chance constrained programming. M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris eds. ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5–10 June 2016, Vol. 2, pp. 3007-3019.

2. T.N. Trần, M. Staat (2014), Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method. K. Spiliopoulos, D. Weichert eds. Limit states of materials and structures: Direct methods. Springer, Dordrecht, 101-117.

3. T.N. Trần, R. Kreißig, M. Staat (2009), Probabilistic limit and shakedown analysis of thin plates and shells. Structural Safety, 31(1), 1-18.

4. C.V. Le, H. Nguyen-Xuan, H. Nguyen-Dang (2010), Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput. Struct., 88(1-2), 65-73.

5. C.V Le, M. Gilbert, H. Askes (2009), Limit analysis of plates using the EFG method and second-order cone programming. Int. J. Numer. Meth. Engng, 78, 1532-1552.

6. T. Belytschko, P.G. Hodge (1968), Numerical methods for the limit analysis of plates. Trans. ASME, J. Appl. Mech., 35, 796-801.

7. C.T. Morley (1965), The ultimate bending strength of reinforced concrete slabs. PhD thesis, Cambridge University.

8. L. Capsoni, A. Corradi (1999), Limit analysis of plates-a finite element formulation. Struct. Eng. Mech., 8(4), 325-341.

9. E.N. Fox (1974), Limit analysis for plates: the exact solution for a clamped square plate of isotropic homogeneous material obeying the square yield criteron and loaded by uniform pressure. Math. Phys. Eng. Sci., 277(1265), 121-155. 

10. R.H. Wood (1969), A partial failure of limit analysis for slabs, and the consequences for future research. Mag.Concr. Res., 21, 79-90.

11. W.C. McCarthy, L.A. Traina (1987), A plate bending finite element model with a limit analysis capacity. Math. Model., 8(Supplement C),486-492.

12. K. Krabbenhoft, L. Damkilde (2002), Lower bound limit analysis of slabs with nonlinear yield criteria. Comput. Struct., 80(27-30), 2043–2057.

13. S. Timoshenko, S. Woinowsky-Krieger (1959), Theory of plates and shells. 2nd Edition. McGraw Hill.

14. T.N. Tran (2011), A dual algorithm for shakedown analysis of plate bending. Numer. Methods Eng., 86(7), 862-875.

15. J. Björnberg and M. Diehl (2006), “Approximate robust dynamic programming and robustly stable MPC,” Automatica, vol. 42, no. 5, pp. 777–782.

16. L. Zéphyr, P. Lang, B. F. Lamond, and P. Côté (2017), “Approximate stochastic dynamic programming for hydroelectric production planning,” Eur. J. Oper. Res., vol. 262, no. 2, pp. 586–601.

17. K. Fukushima and Y. Waki (2013), “A polyhedral approximation approach to concave numerical dynamic programming,” J. Econ. Dyn. Control, vol. 37, no. 11, pp. 2322–2335.

18. B. Srinivasan, S. Palanki, and D. Bonvin (2003), “Dynamic optimization of batch processes: I. Characterization of the nominal solution,” Comput. Chem. Eng., vol. 27, no. 1, pp. 1–26.

19. S. Rasoulian and L. A. Ricardez-Sandoval, “Worst-case and Distributional Robustness Analysis of a Thin Film Deposition Process,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 

20. M. Riis and K.A. Andersen (2005), “Applying the minimax criterion in stochastic recourse programs,” Eur. J. Oper. Res., vol. 165, no. 3, pp. 569–584.

21. H. Borsenberger, G. Sandou, and P. Dessante (2010), “Unit Commitment with Production Cost Uncertainty, a Recourse Programming Method,” IFAC Proc. Vol., vol. 43, no. 1, pp. 220–225.

22. A. Prepoka (1995), Stochastic Programming. Springer Netherlands.

23. A. Charnes, W. Cooper, G.H. Symonds (1958), “Cost horzons and certainty equivalence: An approach in stochastic programming of heating oil,” Manage. Sci., vol. 4, pp. 235–263.

24. A. Charnes and W.W. Cooper (1959), “Chance-Constrained Programming,” Manage. Sci., vol. 6, no. 1, pp. 73–79.

25. J.W. Simon and D. Weichert (2012), “Shakedown analysis with multidimensional loading spaces,” Comput. Mech., vol. 49, no. 4, pp. 477–485.

26. J.W. Simon and D. Weichert (2012), “Shakedown analysis of engineering structures with limited kinematical hardening,” Int. J. Solids Struct., vol. 49, pp. 2177–2186.

27. T.N. Tran, R. Kreißig, D.K. Vu, and M. Staat (2008), “Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface,” Comput. Struct., vol. 86, no. 17–18, pp. 1683–1695.

28. Tran Ngoc Trinh, Staat, M.(2021): Direct plastic structural design under random strength and random load by chance constrained programming. Eur J Mech A Solids; 85(1): art. no. 104106.

29. K.A. Sikorski and A. Borkowski (1990), “Ultimate load analysis by stochastic programming,” in Mathematical Programming Methods in Strutural Plasticity, D.L. Smith, Ed., Springer, Wien, New York, pp.403–424.

Bài viết liên quan: